Nowcasting economic activity with electronic payments data: A predictive modeling approach
Loading...
Borradores de Economía; No. 1037
Date published
2018-02-12
Date
2018-02-12
Part of book title
ISSN
ISBN
Document language
eng
Metrics
downloads: 0
abstract_views: 0
Las opiniones contenidas en el presente documento son responsabilidad exclusiva de los autores y no comprometen al Banco de la República ni a su Junta Directiva.
The opinions contained in this document are the sole responsibility of the author and do not commit Banco de la República or its Board of Directors.
Abstract
Economic activity nowcasting (i.e. making current-period estimates) is convenient because
most traditional measures of economic activity come with substantial lags. We aim at
nowcasting ISE, a short-term economic activity indicator in Colombia. Inputs are ISE’s lags
and a dataset of payments made with electronic transfers and cheques among individuals,
firms, and the central government. Under a predictive modeling approach, we employ a nonlinear
autoregressive exogenous neural network model. Results suggest that our choice of
inputs and predictive method enable us to nowcast economic activity with fair accuracy.
Also, we validate that electronic payments data significantly reduces the nowcast error of a
benchmark non-linear autoregressive neural network model. Nowcasting economic activity
from electronic payment instruments data not only contributes to agents’ decision making
and economic modeling, but also supports new research paths on how to use retail payments
data for appending current models.
Description
Temática
Keywords
Keywords
Citation
Collections
Seleccionar año de consulta:
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito