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Abstract

This paper assesses the local effects of gold mining on human capital accumulation in
contexts where illegal mining is prevalent. Evidence is based on high-resolution geographic
information of gold mining and schools, and rich administrative data from Colombia. I
exploit a boom in international gold prices and the exogenous geographic distribution
of gold deposits to assess the causal effects of mining. Results indicate that mining
increases enrollment in primary school and reduces dropout rates throughout the school
cycle. However, mining also reduces standardized test scores and college enrollment,
particularly in academic degrees and STEM fields. The estimated effects are considerably
larger when both legal and illegal mining are accounted for. I then assess some of the
potential mechanisms through which the commodity price shock can affect human capital.
While child labor is overall unaffected, young adults between 19 and 25 are more likely
to work in the mining sector. Evidence also indicates that mining increases royalties and
public investment, with mixed results in terms of school inputs. Mining also intensifies
conflict and violence, with potential large negative effects on human capital accumulation.
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Resumen

Este trabajo estudia el efecto local de la minerı́a de oro sobre la acumulación de capital
humano en contextos en los cuales predomina la minerı́a ilegal. La evidencia está basada en
información geográfica de alta resolución de minerı́a y registros administrativos detallados
del sistema educativo de Colombia. Para estimar los efectos causales de la minerı́a se explota
la variación exógena en los precios internacionales del oro y la distribución geográfica de
los depósitos de mineral. Los resultados indican que la minerı́a incrementa la matrı́cula
escolar en primaria y reduce la deserción a lo largo del ciclo escolar. Sin embargo, la minerı́a
también tiene efectos negativos sobre el aprendizaje y reduce las probabilidades de acceder
al sistema de educación superior, particularmente en carreras STEM. Los efectos estimados
son considerablemente más grandes cuando se tiene en cuenta tanto la minerı́a legal como la
ilegal. En la última sección se prueban distintos mecanismos a través de los cuales el boom
minero puede afectar la acumulación de capital humano. Mientras que no hay evidencia de
mayor trabajo infantil, los adultos jóvenes entre 19 y 25 años tienen mayores probabilidades
de trabajar en el sector minero. La evidencia también muestra que las regalı́as y la inversión
pública aumentaron en los municipios mineros, con resultados mixtos para la provisión de
educación escolar. Finalmente, el boom de precios intensifica el conflicto y la violencia en
estas regiones, con efectos negativos potencialmente importantes sobre la acumulación de
capital humano.
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1 Introduction

Natural resources impact economic development through multiple channels. Commodity price
booms increase consumption and investment but also appreciate local currencies and increase
volatility, with detrimental effects to non-mining sectors and long-term growth (Sachs and
Warner, 2001; Auty, 2007). Resource-dependent countries and regions are also more prone to
corruption and violence, which comes at a high price in terms of institutional and economic
development (Ross, 2004; Mehlum et al., 2006; Robinson et al., 2006; Brückner and Ciccone,
2010; Sala-i Martin and Subramanian, 2013; Dube and Vargas, 2013; Boschini et al., 2013;
Asher and Novosad, 2018).
An alternative mechanism through which natural resources affect long-term economic de-
velopment is human capital accumulation. Higher wages could boost private investment in
education, however, they can also increase the opportunity cost of studying. Aggregate factors,
such as public investment or violence, may also mediate the effect of mining on human capital.
Cross-country evidence on the human capital mechanism is mixed. While Gylfason (2001),
Birdsall et al. (2001), and Papyrakis and Gerlagh (2004) show negative relationships between
natural resources and education attainment and learning, Stijns (2006) and Smith (2015) find
positive or insignificant effects. Ebeke et al. (2015) find that mining rents can influence career
choices, however, the effects vary according to the quality of political institutions. In low
income countries, with weaker institutions, oil booms increase enrollment in professions that
are more prone to rent-seeking. The opposite happens in well-governed countries, where
students are more attracted to careers in science and technology.
At the sub-national level, evidence based on large-scale mining consistently shows that
education spending and school attendance increases near mining sites (Aragón and Rud, 2013;
Caselli and Michaels, 2013; Chuhan-Pole et al., 2015; Ahlerup et al., 2017). However, most of
the gold mining in developing countries takes place in small-scale and illegal mines and there
is still little evidence on the effect of this type of mining on human capital accumulation. One
of the few papers addressing this issue is Santos (2018). Based on census samples from 1985
to 2005, the author finds that during the first years of the price boom, child labor increased
and school attendance dropped in municipalities with gold mining.
This paper provides new evidence on the local effects of mining on human capital accumulation.
Evidence is based on Colombia, where gold production tripled between 2001 and 2014, as a
result of a sharp rise in international prices. Unlike other countries in which large-scale mining
is prevalent, the 2010 mining census indicates that approximately 87% of the Colombian gold
is extracted in small-scale and illegal mines. I use high-resolution geographic information
on gold mining and schools and rich administrative data from the education sector. I also
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use household surveys and aggregate data on public investment, corruption, and violence, to
assess alternative mechanisms through which mining can affect human capital decisions.
I exploit the exogeneity of international gold prices and the geographic distribution of gold
deposits to assess the causal effects of mining. The identification strategy relies on the
assumption that gold prices disproportionately affect areas with potential for gold mining. I
also assess the differential effect of legal and illegal mining with two time-varying measures
of mining. The first one, area covered by active mining titles, captures the expansion of legal
mining. The second one is the deforestation in areas with identified gold deposits. Since
mining is one of the main sources of deforestation in the region of study, this is a proxy for
all mining activities, whether they are legal or not. The potential measurement error and
endogeneity problems are addressed by instrumenting these measures with the interaction
between time-invariant gold deposits and international prices.
The main results show that the gold boom increases school enrollment in primary school
and reduces dropout rates at all school levels. I also find that mining booms are followed by
an increase in promotion rates in primary and lower secondary. These improvements at the
extensive margin contrast with the negative effects on learning. In fact, mining has negative
and significant effects on the exit exam, and grade 9 proficiency tests. Students in mining
areas are also less likely to enroll in college, and to opt for academic degree (4-years) and
a Science, Technology, Engineering, and Mathematics (STEM) fields. Since the number of
students taking the exam and the age of the students is unaltered, these results do not seem to
be driven by selection. The estimated effects have the same sign and are statistically significant
for mining titles and mining deforestation. However, they are considerably larger when I use
the deforestation-based measure, reflecting the importance of illegal mining in Colombia.
Mining could affect human capital accumulation through multiple channels, including the
labor participation of children and young adults, public investment, and violence. I use a
relatively simple child labor model to incorporate all these factors in a single framework
and estimate the effect of mining on each of these potential mechanisms. Results indicate
that the price shock reduced the labor participation of children between 10 and 14 in the
mining sector. In contrast, young adults between 19 and 25, and particularly males, are
more likely to work in mining during the boom period. Aggregate factors affecting learning
might have also mediated the effect of mining on human capital. First, royalties and public
investment increased in mining municipalities during the boom years. This is not reflected in
improvements in primary school inputs. At the secondary level, I find that mining regions hire
less teachers but invest more in their training. Second, mining could also boost corruption and
affect local institutions. However, I find no significant effects on disciplinary prosecutions or
corruption-related criminal investigations. Third, the commodity price shock fueled conflict
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and violence in the mining regions, significantly increasing homicide and forced displacement
rates.
The paper contributes to the literature in at least three ways. First, the analysis is based
on satellite imagery and detailed geographic information allowing to measure mining at a
high-spatial resolution. Previous studies are in most cases based on municipal-level analysis
(Aragón and Rud, 2013; Santos, 2018), and the few papers to use such granular geographic
information focus exclusively on large-scale mining (Chuhan-Pole et al., 2015; Ahlerup et al.,
2017). Moreover, I use deforestation in cells with identified gold deposits to account for illegal
mining. Results indicate that previous studies based exclusively on mining titles could be
underestimating the effect of mining.
Second, I measure human capital accumulation using administrative records capturing both
intensive and extensive margin outcomes. While the existing literature has focused almost
exclusively on school attainment, I find that natural resource shocks also have an impact
on long-term development through learning and college enrollment. Moreover, the negative
impact on STEM degrees is in line with Ebeke et al. (2015) in that natural resource shocks can
contribute to the misallocation of talent in contexts where institutions are weak.
Third, I assess alternative mechanisms through which mining can affect human capital accu-
mulation. My results contrast with a number of previous studies on commodity-price booms
and child labor as I find that gold mining has negative or null effects on labor participation
among children (Kruger, 2007; Dammert, 2008; Cogneau and Jedwab, 2012; Santos, 2018).
In this context, most of the effects of mining on labor participation are concentrated on young
adults, which is consistent with the lower enrollment in higher education. I also test the effect
of mining on a number of aggregate mechanisms including public investment and violence.
While public investment increased, there are no detectable improvements on school inputs.
Mining also intensified violence and conflict quite dramatically, with potential negative effects
on human capital accumulation.
The remainder of this paper is organized as follows. The next section introduces the theoretical
framework. Section 3 characterizes the Colombian gold mining sector. Sections 4 and 5
describe the data and empirical strategy. Section 6 presents the main results and section 7
assesses some of the potential mechanisms. The last section concludes.

2 Gold mining in Colombia

Colombia experienced a gold rush during the past decade. According to official statistics,
gold production grew from 21 tons in 2001, to near 60 tons in 2014 (Panel a of Figure 1). In
its peak year of 2012, the country was the 11th largest producer of gold in the world, with
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approximately 2% of the total production, surpassing Brazil and Indonesia (USGS, 2015). The
boom was driven by a sharp rise in international prices; For the first time since the eighties,
the price of gold surpassed 600 USD per troy ounce, reaching a maximum of 1,900 USD in
September 2011. This was mostly caused by the financial crisis, during which gold was used
as a safe haven for financial assets (Baur and McDermott, 2010; Reboredo, 2013).
Colombia also witnessed an accelerated growth of mining titles.1 The surface covered by
approved gold titles increased by over 700%, from 3,583 km2 in 2001, to 29,361 km2 in 2014
(Panel b of Figure 1). Although this boom was mostly driven by sharp increases in gold prices,
there were also generous tax incentives and legislative reforms designed to attract foreign
investors, who now own most of the titles.2 The title expedition process, however, was far from
transparent. Corruption scandals and lack of administrative capacity forced the government
to stop the application process between 2011 and 2013, and restructure the title expedition
process and the Mining Cadastre.3

In spite of the rapid growth of mining titles, Colombia’s gold sector is still dominated by
artisanal and illegal mining. The 2010-2011 Mining Census indicates that 87% of the gold
mines operate without a title, and only 3% have mandatory environmental permits. Reality is
probably worse than statistics reflect; compliance with the Census was not mandatory, and
officers failed to visit mines in conflict regions. This highlights two failures of the Colombian
mining policy. On one hand, the various plans to formalize artisanal, small-scale, miners have
consistently failed (Echavarria, 2014; Gonzalez et al., 2013; Defensorı́a del Pueblo, 2010).
On the other hand, illegal alluvial mining, which is highly mechanized and causes enormous
environmental impact, has rapidly spread. Identifying how much of the reported production
comes from illegal mining is difficult since most of the gold is laundered through local traders
and exporting companies, that pay royalties and export it legally. Moreover, there are serious

1Colombian subsoil resources are the property of the State and mining firms are granted titles to exploit them.
Since 2001 (Mining Code, Law 685 of 2001), Concession Agreements are the only legal form of contracting.
These titles, granted for up to 30 years, contemplate three phases: exploration, construction, and exploitation. The
exploration phase period is 3 years and can be extended up to 11 years. Environmental permits are required to
begin the construction and exploitation phases. During the initial phases, firms pay a yearly fee that is determined
by the surface area. Once the exploitation phase begins, mining companies pay royalties over the reported
production (4% for gold and silver, and 6% for alluvial gold). Royalties are collected by the central government,
and mining departments and municipalities receive a fraction of them. The 2012 tax reform reduced the share
of royalties received by producing departments and municipalities and redistributed them nationwide based on
poverty levels.

2Between 2002 and 2005, Congress approved sector-specific income tax breaks, tax deductions for invest-
ments, and legal stability contracts. Also, the new Mining Code simplified the institutional framework for doing
business.

3The corruption scandals included several cases of bribery, titles in protected areas, and speculation with
mining titles. By 2011, there were 19,000 accumulated requests, most of which were eventually rejected by the
new National Mining Agency (The Economist, 2013).
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Figure 1
The Colombian Gold Rush

(a) Reported Prodution (b) Titled Area

Source: Author’s calculations based data from World Bank, SIMCO, SIGOT and Tierraminada.
Notes: Gold production is expressed in tons and titled area in km2. International prices are expressed in US dollars per Troy Once.

traceability issues. According to Goñi et al. (2014), 23% of the gold is not sold and therefore
reported, in the municipality where it was extracted.
This study focuses on 13 departments from the Pacific, Central and Caribbean regions, which
account for 99.3% of the reported gold production and 91.2% of the titled area (Figure 2).4

Most of these departments have had gold mines since the colonial period. According to
Acemoglu et al. (2012), the resulting extractive institutions have significantly affected their
long-run economic growth. These regions have traditionally combined underground mining
in the mountains and alluvial mining in the river beds. However, during the period of study
underground mining has grown at a relatively slow pace, while alluvial mining has exploded
under the lead of illegal actors (Rettberg and Ortiz, 2014; UNODC, 2015). There are some
large-scale projects in the Central region, however, none of them has reached the production
phase.5

The mining boom has also had devastating effects on the environment. Alvarez-Berrı́os
and Aide (2015) show that the impact of mining on deforestation in South America has
significantly increased over the last decade. Forest loss in gold mining areas reached 116,000
Ha between 2007 and 2013, and one of the hotspots is located in the central-west region of
Colombia. Consistently, official statistics indicate that mining is nowadays one of the main

4Pacific region: Cauca, Chocó, Nariño, and Valle del Cauca; Central region: Antioquia, Caldas, Huila,
Quindı́o, Risaralda, and Tolima; and Caribbean region: Bolı́var, Córdoba, and Sucre.

5In particular, two of the largest ongoing open-pit projects in the country are Mandé Norte and La Colosa.
Given the multiple legal actions that were taken by local communities, including a referendum, both projects are
currently suspended (El Tiempo, 2010; Reuters, 2017).
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Figure 2
Geography of Gold Mining

Source: Author’s calculations based data from SIMCO, SIGOT, Tierraminada, UNODC, and SGC.
Notes: The geochemical anomalies and evidence of alluvial mining are measured in 2009 and 2014, respectively. Approved titles include
all gold mining titles that were active at some point between 2000 and 2014. Requested titles include all pending requests by the end of
2014. The red line delimits the region of study.

6



causes of deforestation in the area of study (IDEAM, 2015). Abundant evidence has also
shown that mercury contamination of water sources has increased, and so have the number of
reported cases of mercury poisoning and newborn complications (Cordy et al., 2011; Güiza
and Aristizabal, 2013; Romero and Saavedra, 2015). Rozo (2016) finds that gold mining has
also increased the incidence of malaria, mostly due to the growing availability of stagnant
water surfaces.
Abundant literature has also shown that gold mining has fueled conflict in Colombia (Dube
and Vargas, 2013; Idrobo et al., 2014). In fact, mining has become an important source of
financing for illegal armed groups, intensifying violence in the region of study.6 Official
reports also indicate that forced displacement and human rights violations have increased in
municipalities with large-scale mining projects (Garay et al., 2013). Besides, illegal mining is
a constant source of corruption and tax fraud. Local authorities are in charge of monitoring
gold production and receive a share of the royalties. This creates incentives for local authorities
to participate in gold laundering schemes (Garay et al., 2013; Rettberg and Ortiz-Riomalo,
2014).7 Consistently, Saavedra and Romero (2017) show that the 2012 tax reform, which cut
the share of royalties transferred back to the municipality, increased illegal mining, especially
in areas where law enforcement is weak. The Colombian Government has since increased the
number of raids and introduce legislative reforms facilitating the enforcement of law.8 The
efficacy of these policies is still to be proven.

3 Conceptual framework

One of the main mechanism through which a commodity price boom can affect human capital
accumulation is the labor participation of children and young adults. When mining wages
are attractive and jobs are available, children and young adults have incentives to work,
often neglecting their education. Even if they stay in school and graduate, mining can affect
preferences for higher education when the shift in the opportunity cost of studying is perceived
as permanent. In this case, students might study less, opt-out of college, or choose less
selective degrees. Environmental factors may also mediate the effect of mining on human
capital. For instance, evidence shows that commodity price booms fuel violence and conflict

6Qualitative evidence suggests that most miners and traders pay extortions in conflict areas, and that illegal
armed groups are in many cases actively involved in mining activities.

7There is also evidence of royalties fraud schemes, where mafias falsely report gold as produced in mu-
nicipalities where they have control on local authorities and public spending (El Espectador, 2013). Moreover,
ongoing investigations indicate that gold has been used as part of a massive drug-related money laundering
schemes (The Telegraph, 2014; Bloomberg, 2015).

8For instance, the Law 1453 of 2011 increases the penalty for illegal mining and environmental damage.
Likewise, Decision 774 of 2012 of the Andean Community (CAN) restricts machinery commerce, creates a
unified mining register, and allows authorities to seize or destroy machinery in absence of mining titles.
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(Ross, 2004; Brückner and Ciccone, 2010; Dube and Vargas, 2013; Idrobo et al., 2014). Wars
and violence can, in turn, affect school enrollment and learning (Akresh and De Walque, 2008;
Shemyakina, 2011; Chamarbagwala and Morán, 2011; Leon, 2012; Rodriguez and Sanchez,
2012; Minoiu and Shemyakina, 2014). Mining booms can also improve education through an
increase in local revenue and public investment. However, the gains from additional revenue
and investment could be undermined if the mining increases corruption and weakens the
quality of local institutions (Martınez, 2016; Asher and Novosad, 2018).
I use a relatively simple child labor model in the spirit of Ravallion and Wodon (2000)
and Kruger (2007) to incorporate all these mechanisms in a single framework. Suppose a
representative household with a single offspring who allocates a unit of time to either study
(s) or work (l): 1 = s + l. The household utility function is additive in consumption (c) and
children human capital (h):

U(c, h) = u(c) + αv(h) (1)

Functions u and v are twice continuously differentiable, increasing in c and h, and strictly
concave. α is a positive coefficient reflecting family and individual preferences for education.
Human capital is the product of study time and a positive education technology coefficient (β)
that captures all environmental factors, such as school quality and violence, affecting learning:
h = βs. The budget constraint is such that each household consumes the total labor income of
parents (I) and offspring (wl):

c = I + wl (2)

In the interior solution, the marginal rate of substitution between human capital and consump-
tion is positively related to wages, and negatively to education technology and preferences for
education:

−
∂v
∂h
/
∂u
∂c
=

w
αβ

(3)

Commodity price booms can raise the opportunity cost of schooling by increasing wages.
Mining can also affect human capital choices through education technology. For instance,
public investments that improve school quality reduce the opportunity cost of education, while
violence and corruption have the opposite effect. Families and individuals might also increase
the opportunity cost of studying by reducing their preferences for education.
The effect of an increase in wages on human capital can be decomposed into income and
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substitution effects using the Slutsky equation:

∂h
∂w
=
∂h

∂I
l +

∂h∗

∂w

∣∣∣∣∣
u=u

(4)

Where h and h∗ are the Walrasian and Hicksian demand functions of human capital, respec-
tively. Given the assumptions of the model, the income effect (first term of the right-hand
side) is always positive and the substitution effect (second term of the right-hand side) is
negative. Therefore, positive shocks in children wages reduce human capital accumulation if
the substitution effect is larger than the income effect, and increase it if the opposite happens.

4 Data

4.1 Gold mining

One of the practical consequences of the prevalence of artisanal and illegal mining is that
the existing measures of gold production are limited and unreliable (Goñi et al., 2014). For
instance, official production statistics, based on royalties, not only fail to account for an
unknown fraction of the illegal mining but are also distorted by royalties frauds and money
laundering schemes. Besides, production is aggregated at the municipal level, and there is no
way to track it to a specific mine. The Mining Cadastre, registering all approved and requested
titles, has also several limitations. Notably, there is no information about the production of
each mine. Moreover, approval dates are not always good predictors of gold production. In
fact, there are some areas where artisanal and illegal miners have operated long before the
license was requested. There are also large areas with approved titles which have not reached
the production phase.
I begin my analysis by identifying areas with high probability of having gold deposits. I do this
by combining three different data sources. First, the geochemical anomalies associated with
the presence of gold mineralization provided by the Colombian Geological Service (SGC, for
its acronym in Spanish). The agency uses historic geochemical anomalies, on-site sampling,
and cluster analysis to identify high potential areas for gold mining (SGC, 2009). Second, the
remote-sensing evidence of alluvial gold exploitation from the United Nations Office on Drugs
and Crime (UNODC). The evidence is generated using remote sensing analysis based on the
2014 Landsat imagery and on-site monitoring and is available at a 1 km2 resolution.9 Third,
the approved and requested gold mining titles registered in the Mining Cadastre.10 Given the

9UNODC monitors illicit crops in Colombia since the year 2001. Given the growing intensity of illegal
mining, it started monitoring alluvial mining in 2014. For more details on the remote sensing methodology, see
UNODC (2016).

10Most of the approved titles information, including type of mineral, date of approval, and detailed GIS data is
provided by the Mining Information System of Colombia (SIMCO) and the Colombian Geographic Information

9



costs of requesting and holding a title, firms have few incentives to invest in areas without
potential. Therefore, it is reasonable to assume that titles reflect firms’ private information
regarding gold deposits. This is consistent with the fact that most titles were requested in areas
traditionally exploited by artisanal miners (Goñi et al., 2014; Gonzalez et al., 2013). Between
2001 and 2014, the government approved 3,114 titles for gold mining and there were 429
pending requests in December 2014. As can be seen in Figure 2, the three data sources tend
to overlap in the main mining clusters and are complementary in other areas. Evidence of
alluvial mining and geochemical anomalies are particularly useful to detect gold deposits in
areas surrounding mining titles and within national parks and collective lands, where titles are
restricted.11

Based on these three sources of information, I create a time-invariant raster that takes value 1
if there is any evidence of gold deposits and 0 otherwise. The raster has a spatial resolution of
approximately 1 km2, providing a detailed picture of gold mining potential in the vicinity of
schools and households. While 43% of the municipalities in Colombia have some evidence
of gold deposits, less than 5% of the cells actually match these criteria. This reflects the
heterogeneous distribution of gold deposits, a variation that will be exploited as a source of
exogenous variation. More details on the identification strategy are presented in Section 5.
To further study the differential effects of illegal mining, I propose two time-varying measures
of gold mining. The first one is the area covered by active mining titles. A title is considered
active in year t if it was approved before or during that year, and has not expired. This measure
is intended to capture the expansion of legal mining, independently of the stage of the project.
Based on the mining titles polygons, I create a raster with a spatial resolution of 1 km2 for
each year, in which cells take value one if there is an active mining title, and zero otherwise.
The second measure is the annual forest loss in cells with identified gold deposits, capturing
both legal and illegal mining. Since mining is one of the main sources of deforestation in
the region of study, deforestation in cells with high potential for mining is a good proxy
for this activity (Alvarez-Berrı́os and Aide, 2015; IDEAM, 2015).12 I use the Hansen et al.
(2013) high-resolution forest cover maps to calculate the annual deforestation in each cell.13

System for Planning (SIGOT). Requested titles are based on data from TierraMinada, an NGO overseeing mining
activity in Colombia.

11Mining is strictly forbidden in National Parks and requires prior consultation in indigenous or Afro-
Colombian collective lands, both legal instruments that have effectively halted large-scale mining projects in the
region (El Tiempo, 2010).

12Gold mining impacts forest through vegetation removal from mining areas, settlements, and roads. Wood is
also extensively used for building the mining structures and settlements.

13Annual forest loss data is available at a spatial resolution of 30 meters for the period 2001-2016. Between
2001 and 2014, the country lost over 3 million hectares of forest. The expansion of the agricultural frontier in
the Amazon region accounts for more than half of it. The second largest deforestation hotspot is located in the
northeast mining cluster (Figure A.2).
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Annual deforestation in cells with gold deposits, hereafter referred as mining deforestation, is
expressed in hectares per squared kilometer.

4.2 Education outcomes

Human capital accumulation is measured at the extensive and intensive margin using annual
school censuses, standardized test scores, and higher education administrative records. Given
that mining represents only a small share of the economy in large cities, I discard municipalities
over 200,000 inhabitants.14 I focus on public schools, which represent 95.6% of schools in the
sample. The coordinates of the schools are provided by the Ministry of Education and local
authorities (Figure A.1). I was able to geocode 88,7% of the schools in the sample.
The annual school censuses are collected by the National Statistics Department (DANE, for
its acronym in Spanish) and the Ministry of Education (MEN, for its acronym in Spanish).
Principals report basic information of the schools, including ownership, calendar, rurality
status, teachers’ training, and the number of students that enrolled, dropped-out, repeated a
grade or transferred by grade and gender. This information is available for all years between
2004 and 2014.15 Schools may have multiple shifts, in which case they are treated separately.
In order to have enough within-school variation and discard schools that were created during
the mining boom, I further restrict the sample schools with at least 8 years of information.
The final sample includes 16,602 schools, of which 79.3% are rural. In addition to students
enrollment and progress throughout the year, I also collect detailed information on teachers
training from school censuses.
I measure intensive margin effects using three standardized tests administered by the Colom-
bian Institute for the Promotion of Higher Education (ICFES, for its acronym in Spanish). The
most important one is the national exit exam –SABER 11, a high stake exam determining col-
lege acceptance and funding opportunities. Individual scores for different area subjects, along
with basic student characteristics including date of birth and gender. The sample includes
over 872,750 students who graduated from schools in the final sample and took the exit exam
between 2001 and 2014. Additional self-reported characteristics, such as parents’ education
and labor status, were collected in some years, but not others.16 SABER 5 and 9 exams
measure mathematics and language proficiency at the end of primary and lower secondary,
respectively. Comparable tests were administered in 2009, 2012, 2013, and 2014 to randomly
selected samples of students in each school. Schools are classified based on the number

14Colombia has 1,122 municipalities, of which only 26 have more than 200.000 inhabitants.
15While school censuses exist since 2000, enrollment information was not collected in 2003 and dropout and

school transfers can only be differentiated since 2004. Therefore, I focus on the period 2004-2014.
16In particular, questions on parents’ education and labor participation were not asked between 2004 and

2007.
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of students who score above the satisfactory cutoff. For comparability, all individual and
school-level proficiency measures are normalized with respect to national mean and standard
deviation of the corresponding year.
Additionally, I measure higher education enrollment using administrative records from MEN’s
Higher Education Dropout Prevention System (SPADIES, for its acronym in Spanish). I follow
all students who took the exit exam between 2001 and 2014 and enrolled in college up to two
years after graduation. I measure the effect of mining on overall enrollment and accredited
-high quality- colleges. Academic (4-year) and STEM degrees have particularly high wage
premiums, which is why I also assess the effect on these specific choices.17

Table 1 reports summary statistics of schools and standardized tests. Colombian schools
usually combine different education levels. Primary schools, which are predominantly rural,
enroll on average 82.2 students per year. The dropout and grade retention rates are 6.7% and
7.5%, respectively. Lower and upper secondary schools tend to have more students and lower
retention rates. Dropout rates reach a peak in lower (7.5%) and fall in upper secondary (4.8%),
reflecting that students who self-select into high school are likely to graduate. Standardized
test scores are negative, which implies that students in the sample are below the national
average, particularly in mathematics. 6.5% of the exam takers reported working in their senior
high school year. Finally, only 12.8% of the students who took the exit exam enrolled in higher
education within two years of graduation. Of these, 6% enrolled in an accredited college,
10.4% opted for an academic (4-year) degree, and 6.8% for a STEM degree.

17There are 563 colleges in Colombia, of which 120 are accredited. I measure the wage premium of accredited
universities, academic (4-year), and STEM degrees, using data from the Labor Observatory of the Ministry of
Education on entry-wage of students graduating from college in 2011. The unconditional wage differences are
17.0%, 33.4%, and 7.9%, respectively. When I estimated them jointly, the premiums are 10.4%, 33.7%, and
13.6%, respectively.
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Table 1
Summary Statistics of Education Outcomes

Mean sd Obs.
A. Primary
Rural 0.819 0.385 173239
School Enrollment 84.818 112.679 146148
Dropout Rate 6.771 8.866 145868
Retention Rate 7.489 9.800 145868
Promotion Rate 81.601 14.597 145868
Language Proficiency* -0.078 0.949 25683
Mathematics Proficiency* -0.084 0.943 25553

B. Lower Secondary
Rural 0.635 0.482 45573
School Enrollment 220.732 194.770 32807
Dropout Rate 7.538 8.126 32746
Retention Rate 7.100 7.785 32746
Promotion Rate 81.873 12.443 32746
Language Proficiency* -0.149 0.787 7010
Math Proficiency* -0.114 0.825 6963

C. Upper Secondary
Rural 0.529 0.499 30129
School Enrollment 187.343 172.908 21452
Dropout Rate 4.843 6.090 21385
Retention Rate 4.847 5.870 21385
Promotion Rate 87.811 9.923 21385
Exam Takers* 48.736 40.617 21054
Age* 17.801 2.222 1082517
Language Score* -0.196 0.924 1085548
Mathematics Score* -0.161 0.907 1085533
Total Score* -0.219 0.844 1085389
Student Works* 0.065 0.246 792636

D. College Enrollment
College Enrollment* 0.128 0.335 1041992
Accredited College* 0.060 0.238 1041992
Academic Degree* 0.104 0.306 1041992
STEM Degree* 0.068 0.252 1041992

Source: Author’s calculations based data from MEN, DANE, and ICFES.
Note: Statistics are based on a quasi-balanced panel of public schools from 2004 to 2014.

Variables with an asterisk are based on the SABER 5, 9, and 11 standardized tests and higher
education administrative records. Enrollment refers to the number of students registered at the
beginning of the school year. Dropout and grade retention and promotion rates correspond to
the share of enrolled students who dropout or fail grade at the end of the school year. School
proficiency measures for primary and lower secondary are given by the share of students who
score above the satisfactory cutoff in the SABER 5 and 9 tests from 2009, 2012, 2013, and
2014. Upper secondary proficiency measures are based on individual SABER 11 test scores
from 2001 to 2014. College Enrollment is based on SPADIES, for students taking the SABER
11 test between 2001 and 2014. All learning measures are normalized with respect to national
mean and standard deviation of the corresponding year.

4.3 Additional data sources

I use National Household Surveys (GEIH, for its acronym in Spanish) administer by DANE,
to study labor participation of children and young adults. I focus on the 2007-2011 rounds,
which include households’ municipality and rural district, allowing to geocode with precision
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both urban and rural households.18 The sample includes 403,481 households living in 310
municipalities (Figure A.1). These surveys provide detailed information on school attendance
between ages 6 and 18, and labor participation of individuals aged 10 or more.
I also collect municipal level information on public finances, corruption, and violence. Royal-
ties and investment are provided the National Planning Department between 2004 and 2014
(DNP for its acronym in Spanish). Corruption measures are based on two data sources. First,
public records of disciplinary prosecutions to local governments from the national watchdog
agency (Procuradurı́a General de la Nación) between 2008 and 2014. Second, public records
of corruption-related criminal investigation from the General Attorney’s Office (Fiscalı́a

General de la Nación) between 2006 and 2014. Homicide and forced displacement rates
between 2004 and 2014 are provided by CEDE and National Police.

5 Emprical Strategy

This paper estimates the causal effect of gold mining on human capital accumulation. The
first step in doing so is to measure the geographical variation of mining in the vicinity of
schools. Using school coordinates and detailed geographic information on gold mining, I
create fixed-distance buffers around each school and calculate three measures of mining
intensity: number of cells with evidence of gold deposits, number of cells with active mining
titles, and forest loss in cells with evidence of gold deposits. While gold deposit intensity is
time-invariant, active mining titles and mining deforestation are calculated on a yearly basis.
The same measures are used for household surveys, using the rural district centroids as a
reference point.
Benchmark regressions are based on 30 km buffers, and sensibility tests use buffers ranging
from 10 to 50 km. The median school has 389 cells with evidence of gold deposits within 30
km vicinity, equivalent to 13.7% of the total area. In comparison, active mining titles are more
spatially concentrated; 37.2% of the year-cells take value zero and the median schools/year
has only 8 cells with active mining titles in the 30km vicinity. Likewise, the median mining
deforestation within 30 km of the schools is 0.62 Ha/km2/year.

18The 1,122 municipalities are divided into 35,168 rural districts. While most of the administrative information
in Colombia is available at a municipal level, the 2007-2011 rounds of GEIH also include the rural district code.
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Figure 3
Mining Intensity in the 30 km Vicinity of Schools
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Source: Author’s calculations based data from SIMCO, SIGOT, Tierraminada, UNODC, SGC, Hansen et al. (2013),
MEN, and DANE.
Note: The red line represents the median value of the corresponding mining intensity measure.

The effect of mining is estimated using a difference-in-differences approach that exploits
the spatial and temporal variation of gold mining. The first measure I use to capture these
variations is the interaction between the (time-invariant) intensity of gold deposits in the
vicinity of schools and the logarithm of international gold prices. The intuition is that gold
price shocks should disproportionately affect areas with high potential for gold mining.19 To
assess the differential effects of illegal mining, I also estimate the model using two alternative
measures of mining: active mining titles and mining deforestation. While active mining titles
reflect the expansion of legal mining, mining deforestation is a proxy for both legal and illegal
mining.
The specification of the model depends on the unit of analysis. For school-level outcomes
(e.g. enrollment, dropout rate), I estimate panel fixed-effects models as described in Equation

19Examples of studies following a similar approach to estimate the causal effect of the external shock on a
specific economic activity include Black et al. (2002); Angrist and Kugler (2008); Dube and Vargas (2013).
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5. The outcome yst and the gold mining measure Goldst vary by school s and year t. In both
models, errors are clustered at the school level. For ease of interpretation, all mining intensity
measures are normalized with mean zero and standard deviation equal to one. Estimated
coefficients should, therefore, be interpreted as the effect of a one standard deviation increase
in mining intensity in the vicinity of schools. Regressions include school fixed effects (µs)
that control for observed and unobserved school characteristics, including geographic features
determining gold deposits in the area. I also include year fixed effects (τt) and quadratic time
trends for each education district (ηd×t) that account for common shocks and common trends
in education policy.

yst = γGoldst + µs + τt + ηd × t + εst (5)

The effect of mining on individual educational outcomes based on standardized test scores or
household surveys is estimated with repeated cross-section models that include school and
year fixed effects and education district-specific time trends, and also control for students’ age
and gender (Equation 6).20

yist = γGoldst + βXist + µs + τt + ηd × t + εist (6)

The estimated effect of the interaction between the intensity of gold deposit and international
gold prices can be interpreted as causal. In fact, gold deposits depend exclusively on geograph-
ical features and therefore are strictly exogenous to human capital decisions. The location
of the schools and settlements could be endogenous, however, we focus on schools created
before the gold boom and school fixed-effects account for all factors determining their location
decisions. As for international prices, Colombia produces less than 2% of the world’s gold
and is a price-taker in the international gold market (USGS, 2015). Therefore, prices are
exogenous as well.
Mining titles and mining deforestation have at least three potential sources of bias. First,
observed and unobserved factors can simultaneously affect mining intensity and human capital
decisions. For instance, conflict escalation may increase illegal mining and worsen the quality
of public education. Second, there could be reverse causality if changes in the education
system affect the probability of working in any activity related to mining. Third, gold mining
is measured with error, which could lead to attenuation bias. In fact, mining titles do not
necessarily reflect the stage of the project and deforestation in cells with potential for gold
deposits may be caused by other activities. To address these issues, I instrument the alternative

20Other individual characteristics, such as parents’ education, are not observed every year and therefore are
not included in the benchmark specification.
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mining intensity measures with the interaction between gold deposits and international gold
prices. The main assumption is that conditional on the model covariates and fixed effects, the
interaction between gold deposits and international prices only affect human capital decisions
through gold mining. The identification strategy also requires the instrument to be highly
correlated with mining. As will be seen in the next section, this is, in fact, the case.

6 Main Results

6.1 School enrollment and progress

I begin my analysis by estimating the reduced form effects of gold mining on schools enroll-
ment and progress in Table 2. At the primary level, mining increases enrollment and promotion
rates and reduces dropouts. These effects are statistically and economically significant. An
additional standard deviation in mining increases enrollment by 2.564 students, equivalent
to 1.4% of the average enrollment. Mining also reduces the dropout rate by 0.308 pp and
increases promotion rate by 0.302 pp. At the lower secondary level, the effects on enrollment,
dropout, and retention are similar in magnitude but statistically insignificant. However, there
is a significant increase in promotion rates of 0.523 pp. Something similar happens in upper
secondary, where the only significant coefficient is dropout rates, with an estimated effect of
-0.489 pp.
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Table 2
Reduced Form Effect of Gold Mining on School Enrollment and

Progress

School Dropout Retention Promotion
Enrollment Rate Rate Rate

(1) (2) (3) (4)

A. Primary
Gold Deposits × Price 2.564∗∗∗ -0.308∗∗∗ 0.049 0.302∗∗

(0.692) (0.093) (0.104) (0.148)

Mean(y) 81.623 6.832 7.455 81.732
Observations 146024 145743 145743 145743

B. Lower Secondary
Gold Deposits × Price 2.198 -0.307 -0.181 0.523∗

(2.443) (0.198) (0.192) (0.305)

Mean(y) 212.216 7.593 6.972 82.051
Observations 32523 32462 32462 32462

C. Upper Secondary
Gold Deposits × Price 1.302 -0.489∗∗ 0.087 0.369

(2.689) (0.215) (0.179) (0.327)

Mean(y) 178.620 4.885 4.704 87.965
Observations 21254 21211 21211 21211

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to
a separate panel regression that controls for school and year fixed effects, and education district-specific
time trends. The independent variable is the interaction between the intensity of gold deposits in the 30
km vicinity of schools (normalized with mean zero and standard deviation equal to one) and the logarithm
of international gold prices. Standard errors are clustered at the school level.

The instrumental variable estimations for mining titles and mining deforestation are presented
in Table 3. The first thing to notice is that the instrument is a good predictor of both time-
varying measures, with Kleibergen-Paap F statistics oscillating between 114.6 and 23,256.4.
The effects of mining titles on primary enrollment and progress are similar to the reduced
form. However, they are significantly larger for mining deforestation. For instance, at the
primary level, the estimated effect of mining titles and mining deforestation are 2.787 and
8.524 students, respectively. Likewise, the effects on dropout rates in primary and upper
secondary are 2 to 4 times larger when I use the mining deforestation measure.
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Table 3
Instrumental Variable Effect of Gold Mining on School

Enrollment and Progress

School Dropout Retention Promotion
Enrollment Rate Rate Rate

(1) (2) (3) (4)

A. Primary
Mining Titles 2.787∗∗∗ -0.335∗∗∗ 0.054 0.328∗∗

(0.750) (0.101) (0.113) (0.161)
Kleibergen-Paap F 23259.360 23205.315 23205.315 23205.315

Mining Deforestation 8.524∗∗∗ -1.024∗∗∗ 0.165 1.004∗∗

(2.264) (0.316) (0.346) (0.497)
Kleibergen-Paap F 1199.102 1195.651 1195.651 1195.651

Mean(y) 81.623 6.832 7.455 81.732
Observations 146024 145743 145743 145743

B. Lower Secondary
Mining Titles 2.171 -0.304 -0.178 0.517∗

(2.414) (0.194) (0.190) (0.301)
Kleibergen-Paap F 4468.151 4461.275 4461.275 4461.275

Mining Deforestation 8.104 -1.133 -0.666 1.927∗

(8.856) (0.753) (0.715) (1.155)
Kleibergen-Paap F 171.075 170.906 170.906 170.906

Mean(y) 212.216 7.593 6.972 82.051
Observations 32523 32462 32462 32462

C. Upper Secondary
Mining Titles 1.232 -0.462∗∗ 0.083 0.349

(2.541) (0.203) (0.170) (0.308)
Kleibergen-Paap F 2531.228 2526.508 2526.508 2526.508

Mining Deforestation 4.453 -1.678∗∗ 0.300 1.268
(9.104) (0.760) (0.621) (1.124)

Kleibergen-Paap F 115.593 114.649 114.649 114.649

Mean(y) 178.620 4.885 4.704 87.965
Observations 21254 21211 21211 21211

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to
a separate instrumental variable regression that controls for school and year fixed effects, and education
district-specific time trends. The independent variables are mining titles and mining deforestation in the
30 km vicinity of schools. The instrument is the interaction between the intensity of gold deposits in the
30 km vicinity of schools and the logarithm of international gold prices. All mining intensity measures
are normalized with mean zero and standard deviation one. Standard errors are clustered at the school
level.

The effect of mining on enrollment and progress is similar for male and female students. As
can be seen in Appendix Table A.1, there are some cases in which females react differently
than males. For instance, the estimated effect for enrollment in primary school is slightly larger
for female students. However, these differences are economically small and in most of the
outcomes with significant effects, the subgroup difference tests indicate that the coefficients
are equivalent between genders.
These findings are robust to alternative vicinity definitions. In Appendix Table A.2 I replicate
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the reduced form estimates with buffers ranging from 10 to 50 km. The primary school enroll-
ment and dropout rate effects are significant with all buffers. Primary and lower secondary
promotion rate and upper secondary dropout are significant from 30 to 50 km. Some of the
outcomes failing to reject the null with 30 km buffers, may be significant with alternative
definitions. In particular, I find negative and significant effects on lower secondary dropout
rates with 10, 40 and 50 km buffers.
Estimates based on household surveys are in line with these results. Appendix Table A.3
presents the effect of mining on school attendance and overage for the grade. For ease of
interpretation, children are classified into three age groups: 6-9, 10-14, and 15-18. While
all coefficients are positive, mining has no significant effect on school attendance. However,
there is a significant reduction in the number of children between 6 and 9 who are overage
for the grade. This suggests that children are entering the school system earlier, which is
consistent with an increase in enrollment in primary school. The overage coefficients are also
negative for the group 15-18, although statistically insignificant. This reflects the lower upper
secondary dropout rates in mining areas.

6.2 Learning and college enrollment

Gold mining can also affect education on the intensive margin. Table 4 presents the effect on
the SABER 11 (exit exam) test scores. Results consistently show that mining is detrimental to
students’ academic performance. The reduced form estimates for language and mathematics
are -0.019 standard deviations. The effect on the total scores is -0.024 standard deviations.
Instrumental variable estimates are similar in magnitude for mining titles, and approximately
three times larger when I use the mining deforestation measure instead.
These results could be driven by selection. However, the effect on the number of exam takers
is relatively small and statistically insignificant. Consistently, there are no effects on school
enrollment or attendance in upper-secondary (Tables 2 and A.3). Since mining reduces grade
retention in upper secondary, it might also be the case that students are younger. However,
there are no detectable effects on the age of exam takers. Therefore, the observed changes in
tests scores are not driven by age composition either.
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Table 4
Effect of Gold Mining on SABER 11 (Exit Exam)

Test Score Exam Takers

Language Mathematics Total Number Age
(1) (2) (3) (4) (5)

A. Reduced Form
Gold Deposits × Price -0.019∗∗∗ -0.019∗∗∗ -0.024∗∗∗ -0.649 -0.005

(0.006) (0.007) (0.007) (0.906) (0.031)

B. Instrumental Variable
Mining Titles -0.021∗∗∗ -0.020∗∗∗ -0.025∗∗∗ -0.660 -0.006

(0.007) (0.007) (0.007) (0.922) (0.033)
Kleibergen-Paap F 229.712 229.737 229.700 441.161 229.674

Mining Deforestation -0.061∗∗∗ -0.059∗∗∗ -0.074∗∗∗ -2.173 -0.016
(0.022) (0.022) (0.024) (2.990) (0.095)

Kleibergen-Paap F 28.380 28.380 28.377 70.741 28.380

Mean(y) . -0.196 -0.161 -0.219 46.955 17.801
Observations 1023279 1023264 1023138 20574 1023282

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Coefficients in Panel A correspond to separate
OLS regression that control for school and year fixed effects, and education district-specific time trends. Individual-level
regressions also control for the students’ age and gender. The independent variable is the interaction between the intensity
of gold deposits in the 30 km vicinity of schools and the logarithm of international gold prices. Coefficient in Panel
B correspond to separate instrumental variable regressions that control for school and year fixed effects, and education
district-specific time trends. The independent variables are mining titles and mining deforestation in the 30 km vicinity
of schools. The instrument is the interaction between the intensity of gold deposits in the 30 km vicinity of schools and
the logarithm of international gold prices. All mining intensity measures are normalized with mean zero and standard
deviation one. Standard errors are clustered at the school level.

Evidence suggests that mining impacts academic performance from earlier stages of the school
cycle. I estimate the effect of mining on school-level mathematics and language proficiency
scores in grade 5 and 9 in Appendix Table A.4. Results indicate that mining has negative and
significant effects on the grade 9 mathematics, with estimated effects oscillating -0.326 and
-0.401 standard deviations. In contrast, there are some positive, although small, effects on the
mathematics scores in grade 5. This is could be explained by the reduction of overage students
at the primary level. The effects on language are statistically and economically small for both
levels.
Mining also has negative effects on higher education enrollment, particularly in academic
(4-year) and STEM degrees. The effects of mining on college enrollment of students taking
the exit exam are presented in Table 5. The estimated effect of mining on college enrollment
oscillates between 0.8 pp and 2.9 pp. The effect on accredited colleges and STEM degrees is
also negative and significant, although smaller in magnitude. The reduced form estimates for
these two choices are -0.7 pp and -0.6 pp, respectively. While coefficients are also negative,
the estimated effects on accredited colleges are smaller and statistically insignificant. As for
school enrollment and test scores, the estimated effects are considerably larger when using the
mining deforestation measure, which takes into account both legal and illegal mining.
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Table 5
Effect of Gold Mining on College Enrollment

College Accredited Academic STEM
Enrollment College Degree Field

(1) (2) (3) (4)

A. Reduced Form
Gold Deposits × Price -0.010∗∗∗ -0.003 -0.007∗∗ -0.006∗∗∗

(0.003) (0.002) (0.003) (0.002)

B. Instrumental Variable
Mining Titles -0.008∗∗∗ -0.002 -0.006∗∗ -0.005∗∗∗

(0.003) (0.001) (0.002) (0.002)
Kleibergen-Paap F 244.792 244.792 244.792 244.792

Mining Deforestation -0.029∗∗ -0.008 -0.021∗∗ -0.017∗∗

(0.012) (0.005) (0.011) (0.008)
Kleibergen-Paap F 34.227 34.227 34.227 34.227

Mean(y) 0.132 0.060 0.106 0.070
Observations 859474 859474 859474 859474

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Coefficients in Panel A cor-
respond to separate OLS regression that control for gender and age, school and year fixed effects, and
education district-specific time trends. The independent variable is the interaction between the intensity
of gold deposits in the 30 km vicinity of schools and the logarithm of international gold prices. Coeffi-
cient in Panel B correspond to separate instrumental variable regressions that control for school and year
fixed effects, and education district-specific time trends. The independent variables are mining titles and
mining deforestation in the 30 km vicinity of or schools. The instrument is the interaction between the
intensity of gold deposits in the 30 km vicinity of schools and the logarithm of international gold prices.
All mining intensity measures are normalized with mean zero and standard deviation one. Standard errors
are clustered at the school level.

The effects of mining on learning and college enrollment are similar across gender, age, and
parents’ education. I test this by estimating the heterogeneous effects of mining on these
outcomes in Appendix Tables A.5 and A.6. In most cases, coefficients are comparable and the
t-tests confirm that there are no statistical differences. The SABER 11 and college enrollment
results are also robust to alternative vicinity definitions. I test this in Appendix Tables A.7
and A.8 with buffers ranging from 10 to 50 km. In all cases, the sign and significance of the
coefficients remain unaltered when the buffer is changed.
Overall, these results indicate that students in mining areas not only learn less but also have
smaller probabilities of enrolling in college and opting for high-earning degrees. Moreover,
the lower enrollment in STEM degrees is consistent with Ebeke et al. (2015) in that mining
booms fail to attract talent to productive activities.

7 Mechanisms

This section tests some of the potential mechanisms through which mining can affect human
capital accumulation. The first set of results focuses on labor participation of children and
young adults. I then assess the effect on more aggregate factors, such as public investment,
corruption, and violence, that can potentially affect how students learn.
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7.1 Labor participation

Natural resources shocks can directly affect human capital accumulation if students quit school
to join the labor force. I use the labor questionnaire of the household surveys, applied to all
individuals aged 10 or older, to test this mechanism. Table 6 presents the estimated effect of
mining on labor participation in the mining and non-mining sector. Since the legal working
age in Colombia is 15, I split the sample into three groups: 10-14, 15-18, and 18-25.
For children between 10 and 14, the probability of working in mining drops during mining
booms. The estimates coefficients oscillate between -0.002 and -0.004 pp. The effects are also
negative, although statistically insignificant, between ages 15 and 18. This could be the results
of public policy interventions. In fact, mining has been classified as one of the worst forms of
child labor, and child labor eradication policies have explicitly targeted mining activities in
recent years (DPS, 2015).
In contrast, young adults between 19 and 25 are more likely to join the mining sector. The
estimated coefficients go from 1.7 pp with the mining titles measure to 4.7 pp with mining
deforestation. The probability of working in the non-mining sector is unaltered. Results are
similar for the intensive margin of labor supply. While estimates are negative or insignificant
for all children under 18, the effect on the number of hours worked in mining is positive and
significant for young adults between 19 and 25, with coefficients between 0.970 and 2.680
(Appendix Table A.9).
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Table 6
Effect of Gold Mining on Labor Participation of Children and Young Adults

Mining Sector Non-Mining Sectors

10-14 15-18 19-25 10-14 15-18 19-25
(1) (2) (3) (4) (5) (6)

A. Reduced Form
Gold Deposits × Price -0.004∗ -0.013 0.036∗∗ 0.016 -0.004 -0.012

(0.002) (0.014) (0.016) (0.017) (0.037) (0.044)
B. Instrumental Variable
Mining Titles -0.002∗ -0.006 0.017∗∗ 0.007 -0.002 -0.006

(0.001) (0.006) (0.007) (0.008) (0.017) (0.021)
Kleibergen-Paap F 265.370 287.181 255.459 265.370 287.181 255.459

Mining Deforestation -0.004∗ -0.015 0.047∗∗∗ 0.019 -0.005 -0.015
(0.002) (0.012) (0.018) (0.020) (0.042) (0.058)

Kleibergen-Paap F 20.477 17.700 23.633 20.477 17.700 23.633

Mean(y) 0.001 0.004 0.008 0.048 0.206 0.480
Observations 57403 44592 60076 57403 44592 60076

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Coefficients in Panel A correspond to separate OLS regression
that control for gender, age, parents’ education level, rural district fixed effects, year, and month fixed effects, and education district-
specific time trends. The independent variable is the interaction between the intensity of gold deposits in the 30 km vicinity of rural
district centroids and the logarithm of international gold prices. Coefficient in Panel B correspond to separate instrumental variable
regressions that control for gender, age, parents’ education level, rural district fixed effects, year and month fixed effects, and education
district-specific time trends. The independent variables are mining titles and mining deforestation in the 30 km vicinity of rural district
centroids. The instrument is the interaction between the intensity of gold deposits in the 30 km vicinity of rural district and the logarithm
of international gold prices. All mining intensity measures are normalized with mean zero and standard deviation one. Standard errors
are clustered at the rural district level.

I estimate the heterogeneous effects of mining on labor participation in Appendix Table
A.10. Mining has larger effects for males and there are no detectable differences by parents’
education. Estimates based on the SABER 11 survey tend to confirm these results. The effect
of mining on labor participation is significantly larger for males and overage students. The
difference between parental education groups is statistically significant but economically small
(column 4 of Appendix Table A.5).
These changes in labor participation are consistent with the observed wage premiums. I
estimate the wage gap between mining and non-mining sector for different sub-samples of
children and young adults in Appendix Table A.11. Estimates are based on rural districts
with at least one cell with gold deposits within 30km. For young adults between 19 and 25,
wages are 6% higher in the mining sector than in the non-mining sector. The difference is
statistically insignificant for younger children. The premium is particularly large for males,
with an estimated coefficient of 15.6%. Interestingly, females tend to have larger wages in the
non-mining sector, with a premium that is close to -25%. This could partially explain why they
are less likely to join the mining sector during the boom period. Wage premiums are similar
for children with more and less-educated parents. Consistently, there are no differential effects
on labor participation by parental education.
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7.2 Public investment, corruption, and violence

Mining can also impact human capital accumulation through local revenue and public invest-
ment. I test this in Table 7 by estimating the effects of mining on municipal royalties and
investment. Results based on the 2004-2014 period confirm that mining increases royalties
and investment, with reduced form estimates of 13.4% and 15.8%, respectively. IV estimates
are similar in magnitude but less precise. This seems to be the results of the 2012 tax reform,
which assigned fewer royalties to mining municipalities in favor of the poorest ones. When
I exclude the last two years from the analysis I find statistically significant IV effects for
royalties as well.

Table 7
Effect of Gold Mining on Royalties and Public Investment

2004-2014 2004-2012

Royalties Investment Royalties Investment
(1) (2) (3) (4)

A. Reduced Form
Gold Deposits × Price 0.126∗ 0.147∗∗ 0.187∗∗ 0.150∗∗

(0.076) (0.061) (0.078) (0.063)

B. Instrumental Variable
Mining Titles 0.132 0.153∗∗ 0.192∗∗ 0.154∗∗

(0.081) (0.068) (0.084) (0.071)
Kleibergen-Paap F 64.848 64.848 62.035 62.035

Mining Deforestation 0.599 0.696∗ 0.707∗ 0.567∗

(0.454) (0.420) (0.366) (0.323)
Kleibergen-Paap F 8.799 8.799 11.559 11.559

Mean(y) 3.291 8.816 2.682 8.688
Observations 7057 7057 6156 6156

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Royalties and investment are
expressed in logarithms. Coefficients in Panel A correspond to separate OLS regression that control for
municipal and year fixed effects. The independent variable is the interaction between the intensity of
gold deposits in the municipality and the logarithm of international gold prices. Coefficient in Panel B
correspond to separate instrumental variable regressions that control for municipal and year fixed effects.
The independent variables are mining titles and mining deforestation in the municipality. The instrument is
the interaction between the intensity of gold deposits in the municipality and the logarithm of international
gold prices. All mining intensity measures are normalized with mean zero and standard deviation one.
Standard errors are clustered at the municipal level.

These investments may translate into better school inputs. To further explore this mechanism,
I assess the effect of mining on students per teacher and teachers’ training, in Table 8. While
there are no detectable effects at the primary level, the results for secondary schools are mixed.
On one hand, mining regions tend to hire fewer teachers in secondary, which is reflected in
a positive and significant effect on the students to teacher ratio. the estimated coefficients
oscillate between 0.799 and 2.837, equivalent to changes of 3.02% and 10.73%, respectively.
It is worth noting that the effect on enrollment is positive but insignificant (Table 2). Therefore,
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the increase in the students to teacher ratio is not entirely driven by enrollment. On the
other hand, mining has positive effects on secondary teachers’ training. Specifically, there
is a positive and significant effect on the percentage of teachers with a masters degree. The
estimated effects oscillate between 1.022 and 3.629 pp. While qualitative evidence suggests
that royalties have also been used to financed school infrastructure, it is not possible to test
this mechanism with the available data.

Table 8
Effect of Gold Mining on School Inputs

Students per Teacher Teachers’ Highest Degree

Bachelor’s Masters

Primary Secondary Primary Secondary Primary Secondary
(1) (2) (3) (4) (5) (6)

A. Reduced Form
Gold Deposits × Price 0.003 0.799∗∗∗ 0.068 -0.082 0.076 1.022∗

(0.097) (0.225) (0.469) (0.534) (0.334) (0.590)

B. Instrumental Variable
Mining Titles 0.003 0.725∗∗∗ 0.070 -0.074 0.079 0.928∗

(0.099) (0.206) (0.482) (0.485) (0.343) (0.541)
Kleibergen-Paap F 4338.760 881.268 4338.760 881.268 4338.760 881.268

Mining Deforestation 0.011 2.837∗∗∗ 0.231 -0.290 0.258 3.629∗

(0.327) (0.910) (1.585) (1.894) (1.128) (2.176)
Kleibergen-Paap F 513.733 78.050 513.733 78.050 513.733 78.050

Mean(y) 25.211 26.427 65.769 89.468 15.811 25.034
Observations 141419 30289 141419 30289 141419 30289

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Coefficients in Panel A correspond to separate OLS regression
that control for or school and year fixed effects, and education district-specific time trends. The independent variable is the interaction
between the intensity of gold deposits in the 30 km vicinity of schools and the logarithm of international gold prices. Coefficient in Panel
B correspond to separate instrumental variable regressions that control for school and year fixed effects, and education district-specific
time trends. The independent variables are mining titles and mining deforestation in the 30 km vicinity of schools. The instrument is
the interaction between the intensity of gold deposits in the 30 km vicinity of schools and the logarithm of international gold prices. All
mining intensity measures are normalized with mean zero and standard deviation one. Standard errors are clustered at the school level.

Previous evidence has also shown that commodity price booms can increase corruption and
affect the provision of public goods (Garay et al., 2013; Rettberg and Ortiz-Riomalo, 2014;
Saavedra and Romero, 2017). I test this is in columns 1 and 2 of Table 9. While the effects
on disciplinary prosecutions and corruption-related criminal investigations are positive and
economically large, they are consistently insignificant. Therefore, evidence does not allow to
conclude that the gold boom has harmed local governments or crippled its capacity to provide
public goods.
Finally, the last set of results confirms that the gold boom intensified conflict and violence in
Colombia (Dube and Vargas, 2013; Idrobo et al., 2014). I estimate the effect of mining on
the municipal homicide and forced displacement rates in columns 3 and 4 of Table 9. Mining
significantly increases both of these measures, with reduced form coefficients of 9.938 and
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275.010 pp, respectively. The difference between legal and illegal mining is quite large in this
case. For instance, when it comes to homicides, the effect of a one standard deviation increase
in mining is 10.342 pp for mining titles, and 47.751 pp for mining deforestation. Violence has,
in turn, large negative effects on schooling in Colombia (Rodriguez and Sanchez, 2012).

Table 9
Effect of Gold Mining on Corruption and Violence

Corruption Violence

Disciplinary Criminal Forced
Prosecution Investigation Homicide Displacement

(1) (2) (3) (4)

A. Reduced Form
Gold Deposits × Price 0.133 4.458 9.938∗∗∗ 275.010∗

(0.391) (3.670) (1.775) (153.101)

B. Instrumental Variable
Mining Titles 0.077 2.524 10.342∗∗∗ 286.183∗

(0.226) (1.942) (2.354) (165.169)
Kleibergen-Paap F 68.199 69.774 66.659 66.659

Mining Deforestation 0.464 24.604 47.751∗∗∗ 1321.417
(1.392) (30.398) (17.260) (835.911)

Kleibergen-Paap F 1.255 1.299 8.706 8.706

Mean(y) 1.218 23.999 45.093 1935.622
Observations 3654 4698 7308 7308

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. All outcomes are expressed as rate per
100,000 inhabitants. Coefficients in Panel A correspond to separate OLS regression that control for municipal
and year fixed effects. The independent variable is the interaction between the intensity of gold deposits in
the municipality and the logarithm of international gold prices. Coefficient in Panel B correspond to separate
instrumental variable regressions that control for municipal and year fixed effects. The independent variables
are mining titles and mining deforestation in the municipality. The instrument is the interaction between
the intensity of gold deposits in the municipality and the logarithm of international gold prices. All mining
intensity measures are normalized with mean zero and standard deviation one. Standard errors are clustered
at the municipal level.

8 Conclusions

This paper estimates the local effects of gold mining on human capital accumulation in a
context where illegal mining is prevalent. Evidence is based on Colombia, where I combine
high-resolution geographic information on gold mining and rich administrative data on educa-
tion. Mining increases enrollment in primary school and reduces dropout rates throughout
the school cycle. There are also positive effects on the promotion rate in lower secondary.
These improvements at the extensive margin contrast with the negative effects on learning
and college enrollment. I find consistent negative and significant effects on test scores and
college enrollment. I also find that the estimated effects are consistently larger when using the
mining deforestation measure, which accounts for both legal and illegal mining. This suggest
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that previous studies based exclusively on mining titles could be underestimating the effect of
mining.
I assess alternative mechanisms through which mining can affect human capital accumula-
tion. While there are no effects on labor participation among children and adolescents, the
probability that young adults between 18 and 25 work in mining increased during boom
periods. I also assess the effects of mining on aggregate factors that might affect learning. On
one hand, royalties and public investment increased in mining regions, with mixed effects in
terms of school inputs. On the other hand, mining dramatically increased violence and forced
displacement, with potentially negative effects on human capital accumulation.
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Goñi, E. A., Sabogal, A., and Asmat, R. (2014). Minerı́a informal aurı́fera en colombia.

Gonzalez, L. et al. (2013). Impacto de la minerı́a de hecho en colombia. Estudios de caso:
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Online Appendix
(Not for publication)

Table A.1
Reduced Form Effect of Gold Mining on School Enrollment and

Progress by Gender

School Dropout Retention Promotion
Enrollment Rate Rate Rate

(1) (2) (3) (4)

A. Primary
Female 1.364∗∗∗ -0.312∗∗∗ 0.035 0.331∗∗

(0.346) (0.094) (0.104) (0.149)
Male 1.201∗∗∗ -0.304∗∗∗ 0.041 0.313∗∗

(0.347) (0.094) (0.105) (0.150)

Female=Male (p-value) 0.002 0.270 0.442 0.165
Observations 292296 291030 291030 291030

B. Lower Secondary
Female 1.401 -0.403∗∗ -0.009 0.425

(1.234) (0.197) (0.184) (0.300)
Male 0.796 -0.409∗∗ -0.162 0.593∗

(1.222) (0.198) (0.187) (0.306)

Female=Male (p-value) 0.020 0.727 0.000 0.000
Observations 65614 64832 64832 64832

C. Upper Secondary
Female 0.604 -0.480∗∗ 0.204 0.219

(1.353) (0.222) (0.182) (0.331)
Male 0.698 -0.502∗∗ 0.054 0.398

(1.351) (0.223) (0.183) (0.333)

Female=Male (p-value) 0.756 0.127 0.000 0.000
Observations 42904 42423 42423 42423

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each set of coefficients corre-
spond to a separate panel regression that controls for school and year fixed effects, and education district-
specific time trends. The main independent variables are the interaction between gender, the intensity of
gold deposits in the 30 km vicinity of schools (normalized with mean zero and standard deviation equal
to one), and the logarithm of international gold prices. The p-value of a subgroup difference test is also
reported. Standard errors are clustered at the school level.
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Table A.2
Reduced Form Effect of Gold Mining on School Enrollment and Progress:

Buffer Sensibility

10 km 20 km 30 km 40 km 50 km
(1) (2) (3) (4) (5)

A. Primary
School Enrollment 1.910∗∗∗ 2.486∗∗∗ 2.564∗∗∗ 2.789∗∗∗ 2.728∗∗∗

(0.559) (0.625) (0.692) (0.763) (0.813)
Dropout Rate -0.149∗ -0.241∗∗∗ -0.308∗∗∗ -0.337∗∗∗ -0.316∗∗∗

(0.085) (0.089) (0.093) (0.097) (0.099)
Retention Rate 0.084 0.120 0.049 0.008 -0.050

(0.091) (0.098) (0.104) (0.108) (0.111)
Promotion Rate 0.086 0.186 0.302∗∗ 0.409∗∗∗ 0.464∗∗∗

(0.135) (0.142) (0.148) (0.155) (0.160)

B. Lower Secondary
School Enrollment 0.998 0.962 2.198 2.604 2.594

(2.198) (2.310) (2.443) (2.534) (2.627)
Dropout Rate -0.312∗ -0.287 -0.307 -0.376∗ -0.377∗

(0.186) (0.190) (0.198) (0.208) (0.213)
Retention Rate -0.160 -0.132 -0.181 -0.184 -0.202

(0.189) (0.182) (0.192) (0.204) (0.211)
Promotion Rate 0.504∗ 0.442 0.523∗ 0.613∗ 0.630∗

(0.300) (0.293) (0.305) (0.322) (0.333)

C. Upper Secondary
School Enrollment 1.576 0.760 1.302 2.184 2.634

(2.678) (2.618) (2.689) (2.798) (2.971)
Dropout Rate -0.322 -0.330 -0.489∗∗ -0.513∗∗ -0.566∗∗

(0.207) (0.204) (0.215) (0.230) (0.237)
Retention Rate 0.019 0.038 0.087 0.113 0.108

(0.171) (0.165) (0.179) (0.194) (0.196)
Promotion Rate 0.312 0.298 0.369 0.339 0.408

(0.321) (0.310) (0.327) (0.352) (0.362)

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a separate
panel regression that controls for school and year fixed effects, and education district-specific time trends. The
independent variable is the interaction between the intensity of gold deposits in the vicinity of schools (normalized
with mean zero and standard deviation equal to one) and the logarithm of international gold prices. Vicinity buffers
range from 10 to 50 km. Standard errors are clustered at the school level.
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Table A.3
Effect of Gold Mining on School Attendance and Overage

(Household Surveys)

School Attendance Overage

6-9 10-14 15-18 6-9 10-14 15-18
(1) (2) (3) (4) (5) (6)

A. Reduced Form
Gold Deposits × Price 0.007 0.002 0.027 -0.039∗ 0.048 -0.053

(0.020) (0.020) (0.039) (0.023) (0.031) (0.039)

B. Instrumental Variable
Mining Titles 0.004 0.001 0.013 -0.019∗ 0.022 -0.025

(0.010) (0.009) (0.019) (0.011) (0.014) (0.018)
Kleibergen-Paap F 152.840 162.759 147.795 152.840 162.759 147.795

Mining Deforestation 0.008 0.003 0.032 -0.040 0.059 -0.061
(0.021) (0.024) (0.047) (0.028) (0.045) (0.052)

Kleibergen-Paap F 17.702 21.860 19.887 17.702 21.860 19.887

Mean(y) 0.955 0.937 0.686 0.065 0.308 0.520
Observations 45490 57403 44592 45490 57403 44592

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Coefficients in Panel A correspond to separate OLS regression
that control for gender, age, parents’ education level, rural district fixed effects, year, and month fixed effects, and education district-
specific time trends. The independent variable is the interaction between the intensity of gold deposits in the 30 km vicinity of rural
district centroids and the logarithm of international gold prices. Coefficient in Panel B correspond to separate instrumental variable
regressions that control for gender, age, parents’ education level, rural district fixed effects, year, and month fixed effects, and education
district-specific time trends. The independent variables are mining titles and mining deforestation in the 30 km vicinity of rural district
centroids. The instrument is the interaction between the intensity of gold deposits in the 30 km vicinity of rural district centroids and
the logarithm of international gold prices. All mining intensity measures are normalized with mean zero and standard deviation one.
Standard errors are clustered at the rural district level.
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Table A.4
Effect of Gold Mining on SABER 5 and 9

SABER 5 SABER 9

Language Mathematics Language Mathematics
(1) (2) (3) (4)

A. Reduced Form
Gold Deposits × Price -0.025 0.114∗ 0.004 -0.401∗∗

(0.074) (0.068) (0.060) (0.173)

B. Instrumental Variable
Mining Titles -0.023 0.105∗ 0.003 -0.326∗∗

(0.069) (0.063) (0.049) (0.142)
Kleibergen-Paap F 1001.567 998.554 272.671 267.291

Mining Deforestation -0.041 0.172 0.009 -0.901
(0.119) (0.105) (0.136) (0.550)

Kleibergen-Paap F 52.086 57.537 6.126 5.993

Mean(y) -0.086 -0.091 -0.162 -0.115
Observations 22125 21991 6141 6100

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Coefficients in Panel A correspond
to separate OLS regression that control for school and year fixed effects, and education district-specific
time trends. The independent variable is the interaction between the intensity of gold deposits in the 30
km vicinity of schools and the logarithm of international gold prices. Coefficient in Panel B correspond
to separate instrumental variable regressions that control for school and year fixed effects, and education
district-specific time trends. The independent variables are mining titles and mining deforestation in the 30
km vicinity of schools. The instrument is the interaction between the intensity of gold deposits in the 30
km vicinity of schools and the logarithm of international gold prices. All mining intensity measures are
normalized with mean zero and standard deviation one. Standard errors are clustered at the school level.
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Table A.5
Effect of Gold Mining on SABER 11 (Exit Exam) and Labor

Participation by Gender, age, and Parents’ Education

Test Score

Language Mathematics Total Works
(1) (2) (3) (4)

A. Gender
Female -0.020∗∗∗ -0.019∗∗∗ -0.024∗∗∗ 0.004∗

(0.006) (0.007) (0.007) (0.002)
Male -0.019∗∗∗ -0.018∗∗ -0.023∗∗∗ 0.007∗∗∗

(0.006) (0.007) (0.007) (0.002)

Female=Male (p-value) 0.082 0.615 0.671 0.000
Mean(y) -0.196 -0.161 -0.219 0.065
Observations 1023279 1023264 1023138 746101

B. Age
Under (<=18) -0.019∗∗∗ -0.018∗∗∗ -0.023∗∗∗ 0.005∗∗

(0.007) (0.007) (0.007) (0.002)
Over (>18) -0.018∗∗ -0.017∗∗ -0.020∗∗∗ 0.007∗∗∗

(0.007) (0.007) (0.008) (0.002)

Under=Over (p-value) 0.543 0.446 0.220 0.000
Mean(y) -0.196 -0.161 -0.219 0.065
Observations 1023279 1023264 1023138 746101

C. Parents’ Education
Low -0.019∗∗∗ -0.017∗∗ -0.023∗∗∗ 0.006∗∗

(0.006) (0.007) (0.007) (0.002)
High -0.020∗∗∗ -0.018∗∗ -0.026∗∗∗ 0.005∗∗

(0.006) (0.007) (0.007) (0.002)

Low=High (p-value) 0.170 0.683 0.105 0.001
Mean(y) -0.196 -0.161 -0.219 0.065
Observations 743616 743605 743545 732433

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each set of coefficients correspond
to separate OLS regression that control for age and gender, school and year fixed effects, and education
district-specific time trends. The main independent variables are the interaction between gender, age, or
parents’education level, the intensity of gold deposits in the 30 km vicinity of schools (normalized with
mean zero and standard deviation equal to one), and the logarithm of international gold prices. The p-value
of a subgroup difference test is also reported. Standard errors are clustered at the school level.
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Table A.6
Reduced Form Effect of Gold Mining on College Enrollment by

Gender, age, and Parents’ Education

College Accredited Academic STEM
Enrollment College Degree Field

(1) (2) (3) (4)

A. Gender
Female -0.006∗∗ -0.001 -0.005∗∗ -0.003∗

(0.002) (0.001) (0.002) (0.002)
Male -0.006∗∗∗ -0.001 -0.005∗∗ -0.003∗

(0.002) (0.001) (0.002) (0.002)

Female=Male (p-value) 0.172 0.172 0.905 0.508
Mean(y) 0.124 0.058 0.100 0.066
Observations 1023282 1023282 1023282 1023282

B. Age
under (<=18) -0.006∗∗ -0.001 -0.005∗∗ -0.003∗

(0.002) (0.001) (0.002) (0.002)
over (>18) -0.006∗∗ -0.003∗ -0.005∗∗ -0.003∗∗

(0.002) (0.001) (0.002) (0.002)

Under=Over (p-value) 0.937 0.001 0.494 0.333
Mean(y) 0.124 0.058 0.100 0.066
Observations 1023282 1023282 1023282 1023282

C. Parents’ Education
Low -0.006∗∗ -0.002 -0.006∗∗∗ -0.002

(0.002) (0.001) (0.002) (0.002)
High -0.007∗∗∗ -0.001 -0.007∗∗∗ -0.002

(0.003) (0.002) (0.002) (0.002)

Low=High (p-value) 0.394 0.021 0.240 0.813
Mean(y) 0.124 0.058 0.100 0.066
Observations 743618 743618 743618 743618

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each set of coefficients
correspond to separate OLS regression that control for school and year fixed effects, and education
district-specific time trends. The main independent variables are the interaction between gender or par-
ents’education, the intensity of gold deposits in the 30 km vicinity of schools (normalized with mean zero
and standard deviation equal to one), and the logarithm of international gold prices. The p-value of a
subgroup difference test is also reported. Standard errors are clustered at the school level.
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Table A.7
Reduced Form Effect of Gold Mining on SABER 11 (Exit Exam) and

Labor Particiaption: Buffer Sensibility

10 km 20 km 30 km 40 km 50 km
(1) (2) (3) (4) (5)

A. Test Scores
Language -0.013∗∗ -0.017∗∗∗ -0.019∗∗∗ -0.018∗∗∗ -0.016∗∗

(0.006) (0.006) (0.006) (0.007) (0.007)
Mathematics -0.015∗∗ -0.018∗∗∗ -0.019∗∗∗ -0.018∗∗ -0.014∗

(0.006) (0.007) (0.007) (0.007) (0.007)
Total Score -0.015∗∗ -0.022∗∗∗ -0.024∗∗∗ -0.021∗∗∗ -0.017∗∗

(0.006) (0.006) (0.007) (0.007) (0.007)

B. Exam Takers
Number -0.582 -0.472 -0.649 -0.482 -0.262

(0.717) (0.787) (0.906) (1.012) (1.065)
Age. -0.011 0.002 -0.005 0.003 0.014

(0.029) (0.031) (0.031) (0.031) (0.032)

C. Labor Participation
Works 0.004∗ 0.005∗∗ 0.005∗∗ 0.004∗ 0.004∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a separate
OLS regression that control for school and year fixed effects, and education district-specific time trends. Individual-
level regressions also control for the students’ age and gender. The independent variable is the interaction between
the intensity of gold deposits in the vicinity of schools (normalized with mean zero and standard deviation equal to
one) and the logarithm of international gold prices. Vicinity buffers range from 10 to 50 km. Standard errors are
clustered at the school level.

Table A.8
Reduced Form Effect of Gold Mining on College Enrollment: Buffer

Sensibility

10 km 20 km 30 km 40 km 50 km
(1) (2) (3) (4) (5)

College Enrollment -0.005∗∗∗ -0.006∗∗∗ -0.006∗∗∗ -0.006∗∗ -0.006∗∗

(0.002) (0.002) (0.002) (0.002) (0.003)
Accredited College 0.000 -0.001 -0.001 -0.001 -0.001

(0.001) (0.001) (0.001) (0.001) (0.001)
Academic Degree -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗ -0.005∗∗ -0.005∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
STEM Degree -0.002 -0.002 -0.003∗ -0.003∗ -0.003∗

(0.001) (0.001) (0.002) (0.002) (0.002)

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a separate
OLS regression that control for gender and age, school and year fixed effects, and education district-specific time
trends. The independent variable is the interaction between the intensity of gold deposits in the vicinity of schools
(normalized with mean zero and standard deviation equal to one) and the logarithm of international gold prices.
Vicinity buffers range from 10 to 50 km. Standard errors are clustered at the school level.
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Table A.9
Effect of Gold Mining on Hours Worked by Children and Young Adults

Mining Sector Non-Mining Sectors

10-14 15-18 19-25 10-14 15-18 19-25
(1) (2) (3) (4) (5) (6)

A. Reduced Form
Gold Deposits × Price -0.161∗∗ -0.590 2.077∗∗∗ -0.175 -1.534 -0.693

(0.074) (0.448) (0.788) (0.392) (1.575) (2.125)
B. Instrumental Variable
Mining Titles -0.073∗∗ -0.277 0.970∗∗∗ -0.080 -0.719 -0.324

(0.034) (0.203) (0.363) (0.181) (0.744) (0.993)
Kleibergen-Paap F 3957.176 3054.306 3549.835 3957.176 3054.305 3549.836

Mining Deforestation -0.190∗∗ -0.664∗ 2.680∗∗∗ -0.208 -1.724 -0.894
(0.086) (0.380) (0.780) (0.483) (1.809) (2.831)

Kleibergen-Paap F 131.351 66.310 131.029 131.351 66.310 131.029

Mean(y) 0.022 0.145 0.394 1.143 7.680 22.303
Observations 57403 44592 60076 57403 44592 60076

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Coefficients in Panel A correspond to separate OLS regression
that control for gender, age, parents’ education level, rural district, year and month fixed effects, and education district-specific time
trends. The independent variable is the interaction between the intensity of gold deposits in the 30 km vicinity of rural district centroids
and the logarithm of international gold prices. Coefficient in Panel B correspond to separate instrumental variable regressions that
control for gender, age, parents’ education level, rural district, year and month fixed effects, and education district-specific time trends.
The independent variables are mining titles and mining deforestation in the 30 km vicinity of rural district centroids. The instrument
is the interaction between the intensity of gold deposits in the 30 km vicinity of rural district and the logarithm of international gold
prices. All mining intensity measures are normalized with mean zero and standard deviation one. Standard errors are clustered at the
rural district level.
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Table A.10
Reduced Form Effect of Gold Mining on Labor Participation of Children and Young

Adults by Gender and Parents’ Education

Mining Sector Non-Mining Sectors

10-14 15-18 19-25 10-14 15-18 19-25
(1) (2) (3) (4) (5) (6)

A. Gender
Female -0.004∗ -0.014 0.034∗∗ 0.024 0.005 0.002

(0.002) (0.014) (0.016) (0.018) (0.040) (0.047)
Male -0.003∗ -0.012 0.040∗∗ 0.018 -0.019 -0.039

(0.002) (0.013) (0.016) (0.018) (0.039) (0.046)

Female=Male (p-value) 0.121 0.038 0.003 0.000 0.000 0.000
Mean(y) 0.001 0.004 0.008 0.048 0.206 0.480
Observations 57403 44592 60076 57403 44592 60076

B. Parents’ Education

Low -0.003∗ -0.013 0.037∗∗ 0.016 -0.004 -0.022
(0.002) (0.014) (0.016) (0.018) (0.039) (0.044)

High -0.004∗ -0.014 0.037∗∗ 0.018 0.004 -0.021
(0.002) (0.014) (0.016) (0.018) (0.039) (0.044)

Low=High (p-value) 0.145 0.415 0.793 0.038 0.000 0.304
Mean(y) 0.049 0.210 0.489 0.048 0.206 0.480
Observations 57403 44592 60076 57403 44592 60076

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. All Coefficients correspond to separate OLS regression that
control for gender, age, parents’ education level, rural district fixed effects, year, and month fixed effects, and education district-specific
time trends. The independent variable is the interaction between gender and parents’ education, the intensity of gold deposits in the 30
km vicinity of rural district centroids, and the logarithm of international gold prices ((normalized with mean zero and standard deviation
equal to one). The p-value of a subgroup difference test is also reported. Standard errors are clustered at the rural district level.

A9



Table A.11
Mining Sector Wage Premium for Children and Young

Adults by Gender and Parents’ Education

10-14 15-18 19-25
(1) (2) (3)

A. Full sample
Mining 0.175 -0.082 0.060∗

(0.252) (0.064) (0.033)

Mean(y) 7.981 8.345 8.764
Observations 895 5599 22311

B. Gender
Female -0.185 0.080 -0.249∗∗∗

(0.762) (0.226) (0.079)
Male 0.231 -0.084 0.156∗∗∗

(0.257) (0.067) (0.036)

Female=Male (p-value) 0.593 0.481 0.000
Mean(y) 7.981 8.345 8.764
Observations 895 5599 22311

C. Parents’ Education

Low 0.292 -0.009 0.077∗

(0.259) (0.067) (0.040)
High -1.289 -0.635∗∗∗ 0.118∗∗

(1.181) (0.199) (0.054)

Low=High (p-value) 0.192 0.002 0.518
Mean(y) 7.981 8.345 8.764
Observations 895 5599 22311

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. All coefficients
correspond to separate OLS regression that control for gender, age, parents and children
education level, rural district fixed effects, and year and month fixed effects. The indepen-
dent variable is the interaction between gender and parents’ education and a mining sector
indicator. The p-value of a subgroup difference test is also reported.

A10



Figure A.1
Geographic Distribution of Public Schools and Household Surveys

Source: Author’s calculations based data from MEN and DANE. Each blue point represents a school. The grey area corresponds to
municipalities with household surveys. The red line delimits the region of study.
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Figure A.2
Forest Loss (2001-2014)

Source: Author’s calculations based data from SIGOT and Hansen et al. (2013).
Notes: Accumulated Forest loss between 2001 and 2014 is aggregated at a spatial resolution of 1 km2 and expressed in Ha/km2. The red
line delimits the region of study.
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