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Abstract

In this paper we formulate a dynamic multi-unit auction model to characterize bidding behavior

in hydro power dominated electricity markets. Our model implies that, in order to maximize

expected profits, hydro producers will submit bid prices above its marginal production costs

that account for the intertemporal opportunity cost of water and the expected strategic effects

of bids on rivals’ behavior. We test the predictions of our model against data of the Colom-

bian electricity market, where hydro producers hold 63% of total installed capacity, and find

evidence consistent with both dynamic and strategic behavior.

Keywords: Dynamic auction model; Bidding behavior; Market power; Electricity markets.

JEL Classification: L25, D22, D44.

∗This study is the result of a work for the Centro de Estudios sobre Economı́a Industrial e Internacional (CEEII)
of Banco de la República in Cali, Colombia. We are thankful to Álvaro Riascos, José Morán, Daniel Osorio, Luis
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1 Introduction

Many electricity markets around the world work as multi-unit auctions where generators submit

day-ahead supply schedules that are then used by the market operator who defines the daily gener-

ation dispatch. These market designs are intended to bring enough competition so that firms’ bid

prices are near to the competitive levels.

The literature on electricity markets suggest, however, that this does not necessarily hold. The

most important finding in these studies is the presence of inefficient pricing, primarily associated

with the exercise of market power and strategic behavior. Green and Newbery (1992) and Green

(1996), von der Fehr and Harbord (1993), Wolfram (1998) and Crawford, Crespo, and Tauchen

(2007) find evidence for both strategic behavior and significant price-cost markups in the British

electricity market. At the same time, Borenstein and Bushnell (1999) show that the extent to which

generation firms are able to exercise market power in the Californian market is higher during high

demand periods. Similar results are obtained for the Spanish market by Ciarreta and Espinosa

(2010) who show that the exercise of market power is associated with large multi-plant firms.

In many countries, such as Argentina, Brazil, Colombia and Chile, the generation of electricity

is dominated by hydropower plants. In such cases inefficiencies may be even larger due to the pres-

ence of additional dynamic incentives. Although this technology allows for virtually zero variable

production costs, the possibility to store energy allows firms to switch generation from one period

to another of higher expected payoffs implying an intertemporal opportunity cost. Thus, non-trivial

dynamic incentives arise because a firm operating such technology will account for the effect that

its decisions for current production have on its future profits. Stacchetti (1999), Garcia, Reitzes,

and Stacchetti (2001), and Garcia, Campos, and Reitzes (2005) are, to our knowledge, the only

works that explicitly model the dynamic aspects of hydro generation. A common finding in these

studies is that, as water becomes scarce, hydro producers have incentives to increase bid prices

in order to withhold generation and achieve higher future payoffs. These authors show that such

behavior may result in higher prices and inefficient outcomes.

We propose a dynamic multi-unit auction model to characterize bidding behavior in hydro
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power dominated electricity markets. The model builds on the works by Hortacsu and Puller

(2008) who model the Texas electricity market as a share auction, and Balat (2014) who follows the

specification of Jofre-Bonet and Pesendorfer (2003) for dynamic auction models. In equilibrium,

when the intertemporal opportunity cost of water is sufficiently high, hydro generators will submit

bids above its marginal production costs to postpone production and to set the market price that

maximizes its expected profits. We derive explicit predictions regarding the relationships between

bidding strategies and the state variables. In particular, we find that, for a given firm, equilibrium

bids are nonincreasing functions of current own stock, rivals’ stock, expected future own stock and

expected future rivals’ stock.

We then test the predictions of our model using data of the Colombian electricity market. In this

industry, hydroelectric generation is the dominant technology with more than 63% of the system

installed capacity, 95% of which belongs to plants that use dams. Generation is determined at each

point in time by a uniform-price, multi-unit auction where producers submit day-ahead supply

schedules on an hourly-period basis that are then used by a market operator who defines daily

generation dispatches. We focus on the 2001–2008 period when the auction format was practically

unchanged. During this time, the market was dominated by three large generation companies that

own more than 56% of the total production capacity and almost 70% of the total water storage

capacity. The database consists on detailed information of daily bid prices, water stocks and inflows

at bidder level, as well as other market variables.

Our econometric approach is based on a regression analysis of equilibrium bids, current water

stocks and future inflows. The analysis is divided in two major parts. In the first part of our analysis

we define a linear equation where a given generator’s equilibrium bid will depend on its own and

rivals’ current stock. The dynamic component of the model is incorporated by including future

realizations of river flows as a signal for future stock values. In the second part, we define different

subsets of bidders that we believe behave closer to our dynamic benchmark. Hence, we redefine

our equilibrium bid equation and estimate it for different definitions of “optimal bidders”.

The empirical evidence supports the existence of both dynamic and strategic behavior of hydro
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producers. A given firm’s bid price is negatively correlated with its own current aggregate stock.

Given its own stock, each firm will, on average, bid less aggressively if the aggregate stock of the

firm’s rivals is relatively low. At the same time, higher bid prices are associated with low expected

inflows. A given bidder will submit higher bid prices when expecting low inflows for its rivals’

dams. We also find evidence supporting the hypothesis that bidding behavior of the different sets

of “optimal bidders” is closer with our notion of dynamic profit maximization. Our findings are

robust to different specifications, different definitions of future inflows and different sets of optimal

bidders.

The paper is structured as follows. In section 2 we briefly discuss some of the empirical lit-

erature on electricity markets. Section 3 presents a dynamic multi-unit auction model of bidding

behavior from which we obtain explicit predictions regarding the relationships between equilibrium

bids and future water stocks. In section 4 we present a description of the structural characteristics,

auction rules and the database of the Colombian electricity market used in this paper. Section 5

presents the methodology and regression estimates of our empirical analysis. Section 7 concludes.

2 Literature Review

In this section we summarize some of the previous studies that address the problems of producers’

incentives, market power and the dynamic component of hydro generation in wholesale electricity

markets.

The work of Green and Newbery (1992), and later Green (1996), evaluates the competition of

producers in the recently deregulated electricity market of England and Wales. Assuming elastic

demand and smooth supply functions, they apply the optimal supply function with demand uncer-

tainty approach discussed in Klemperer and Meyer (1989) to observed cost and bid data. Both

articles find evidence of market power. The authors conclude that lower markups are achievable by

increasing the number of suppliers in the market.

In its seminal paper, von der Fehr and Harbord (1993) instead propose a static sealed-bid multi-
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unit auction model arguing that in most wholesale electricity markets retail demand is actually

inelastic and firms’ bids are step-supply schedules. They assume homogeneous costs across firms

and generation units. The model suggests that, for levels of demand sufficiently high, producers

have more incentives to submit higher prices as their probability to be dispatched increases.

Borenstein and Bushnell (1999) use a notion of Cournot equilibrium and historical cost data to

simulate the Californian electricity market after deregulation. Their findings agree with previous

works in that high demand periods allow firms to exercise market power. Another an important

result of their contribution is the role of hydroelectric production in determining the severity of

market power.

The more recent work by Crawford et al. (2007) extends the model of von der Fehr and Harbord

(1993) allowing for heterogeneous costs across firms’ different generating units. They introduce

a notion of Bid Function Equilibria with pure-strategy asymmetric bidding. Their model predicts

that a single firm bids strategically to set the market clearing price while the remaining firms bid

their costs. They find empirical evidence supporting this theory for the British spot market between

1993 and 1995.

The empirical works by Wolfram (1998 and 1999) analyze the determinants of producers’

markups in the England and Wales electricity market. The first article is based on a uniform-

price multi-unit auction model where bid shading is more likely to occur for the last dispatched

units. Using markup estimates, the author finds that strategic bid increases are also associated with

larger production capacity shares. The second article is based on a duopoly model and on direct

measures of marginal cost and price-cost margins. The author finds that bid prices are not as high

as predicted by most theoretical models. She suggests that regulatory constraints and long-term

financial contracts are possible explanations for these results.

Similar to von der Fehr and Harbord (1993) and Wolfram (1998), Ciarreta and Espinosa (2010)

show that the exercise of market power is particularly associated with large firms owning several

generating units. Their empirical approach is based on the notion that smaller firms owning a

unique generating unit will bid lower prices than larger multi-unit firms with similar characteristics.
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The authors find evidence for significant exercise market power in the Spanish wholesale electricity

market and conclude that if larger firms had bid as their smaller counterparts, market prices would

have been substantially lower.

The empirical works by Wolak (2000, 2003 and 2007) analyze the effect of forward contracting

in the producers’ bidding strategies in the National Electricity Market in Australia. On one hand,

the model developed in Wolak (2000) is based on the notion of best-response price strategies. The

model suggests that firms with a positive quantity of energy sold in hedge contracts should submit

lower bid prices than they would with a neutral or short contract position. On the other hand,

Wolak (2003 and 2007) tests if firms bidding behavior is also consistent with an alternative model

of expected profit maximization. In both of these two works the estimated marginal cost functions

support an expected profit maximization behavior.

Hortacsu and Puller (2008) also analyze the effect of forward contracting. The article uses a

multi-unit auction model to characterize producers’ bidding behavior in a Bayesian-Nash equilib-

rium. In this model, firms are assumed to maximize expected profits under uncertainty of demand.

Contract positions are assumed to influence the producers’ bidding strategies as private signals. The

authors use bids and costs data of the Texas electricity balancing market, to compare actual bidding

behavior to their theoretical benchmarks. They find that, while large firms performed close to the

static profit maximization behavior, smaller firms’ significantly deviate from their benchmark.

A recent paper by Reguant (2014) investigates the effect of thermal producers’ start-up costs

in bidding behavior. The paper extends the multi-unit auction estimation techniques to a setting

of complex bids in which firms declare cost complementarities over time. The author finds that

start-up costs play an important role in a dynamic setting as they limit the ability of firms to change

production over time, exacerbating fluctuations in market prices.

Though some of the above studies recognize the role of water storage in markets dominated

by hydro power and some even mention its dynamic component, they do not explicitly model

these features. Stacchetti (1999), Garcia, Reitzes, and Stacchetti (2001), and Garcia, Campos, and

Reitzes (2005) are, to our knowledge, the only works that explicitly model the dynamic aspects
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of hydro generation. A common finding in these studies is that, when electricity is storable with

constrained capacity, hydro generators face an intertemporal opportunity cost. Under this setting,

hydro generators have incentives to withhold generation in order to save energy and achieve higher

profits in future periods. Stacchetti (1999) presents a stylized dynamic model that incorporates the

main rules and technical characteristics of the Colombian spot market in 1997. The author uses

an artificial variable to account for the opportunity cost of water assuming that each dominant firm

bids a unique price for all its plants. The model suggests that, under low stocks of water, hydro

generators have stronger incentives to bid higher prices, specially during peak hours.

Garcia et al. (2001) formalize this notion through a two-period duopoly model where hydro gen-

erators engage in a dynamic Bertrand competition. Assuming that water replenishing is governed

by a first-order Markov stochastic process, these authors characterize a Markov Perfect Equilib-

rium where players bid conditional on their stock of water at the beginning of each period. Garcia

et al. (2005) extend this model to more general oligopoly model. Both articles find that the bidding

strategies will depend on the probability that a given firm can reach a future state of significant

market power due to the depletion of its rivals’ water reserves.

The most recent paper by Vegard Hansen (2009), on the other hand, propose a two-period model

with stochastic inflows. The model suggests that the opportunity cost faced by hydro producers

depends on the distribution of both demand and water inflow, as well as on the shape of the demand.

In particular, the author finds that market prices tend to be higher when demand is convex or when

the volatility of inflows is relatively high.

Recent findings for the Colombian electricity market include those of Garcia and Arbeláez

(2002), Espinosa and Riascos (2010), and de Castro, Oren, Riascos, and Bernal (2014). Garcia and

Arbeláez (2002) construct a dynamic Cournot model for Colombian wholesale electricity market.

This model is used to simulate the effect of possible mergers. The authors find that, in presence of

market power, energy withholding results in substantially higher spot prices. Espinosa and Riascos

(2010) propose a model where optimal bidding behavior is characterized by a Bayesian game based

on the results of de Castro and Riascos (2009). They find evidence for substantial gains in efficiency
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in the Vickrey auction compared to the actual uniform auction. On the other hand, de Castro et

al. (2014) evaluate the impact of the transition form self-commitment to centralized-commitment

defined by Resolution CREG 051. The authors conclude that, although there is an improvement in

productive efficiency, most gains were apportioned by producers through higher markups.

Our approach is different from previous work in that we incorporate the dynamic problem of

hydro producers in a multi-unit auction model. We adopt a Markov-perfect equilibrium concept

that enables us characterize the dynamic behavior of generation firms in a hydropower dominated

electricity market. Under this setting, hydro producers submit the bid schedules that maximize their

expected discounted profits conditional on the current stock of its own and rivals’ dams as well as

on its expectations about its own and rivals’ future inflows. In particular, we find that equilibrium

bids are nonincreasing functions of the water stocks and expected inflows. These implications are

supported by empirical evidence obtained from data of the Colombian electricity market.

3 An Auction Model of Hydro Generation

In this section we present a dynamic uniform-price auction model for electricity wholesale mar-

kets where hydropower is a dominant technology. Our model is based on the static Bayes-Nash

equilibrium proposed in Hortacsu and Puller (2008) for the Texas electricity market and the speci-

fication of dynamic auction models of Balat (2014) and Jofre-Bonet and Pesendorfer (2003) . We

first present the static version of the auction model to understand the basic strategic behavior and

then extend it to a dynamic setting in the following Section.

3.1 A standard static model

We model competition in an electricity auction based on the Bayesian-Nash equilibrium character-

ized in Hortacsu and Puller (2008). This model follows the “share auction” formulation of Wilson

(1979). In the model, firms choose bid functions to maximize expected profits under uncertainty

coming from two sources. First, total demand for electricity is determined by random events such
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as weather shocks, so it is stochastic from the perspective of the bidder at the time of bidding.

Second, firms cannot predict the equilibrium bids of their competitors with certainty because each

firm possesses private information regarding their own marginal costs.

Consider a multi-unit auction model with independent private values (IPV) (conditionally sym-

metric). There are N hydropower generation firms whose production costs at time t are denoted by

{Cit(q; sit), i = 1, . . . ,N}, where sit is a private signal distributed F(sit). The stock of water of firm

i at the beginning of each period t is denoted by wit, and is assumed to be of common knowledge.

We also assume zero costs of storing water which is equivalent to assume that spilling water is

allowed and costless. Demand is defined as the sum of a deterministic price-elastic component and

a stochastic constant term, D̃t(p) = Dt(p) + εt.

In each time period t, each firm simultaneously submits a supply schedule, S it(p, sit,wt), con-

ditional on its private signal and the water stock vector, wt ≡ (w1t, . . . ,wNt). As in Hortacsu and

Puller (2008), we restrict S it(p, sit,wt) to be continuously differentiable, with bounded derivatives.

Observe also that ∂S it(p, sit,wt)/∂wit ≥ 0 is a natural assumption since an increase in wi should

not imply a reduction in i’s optimal output, but a reduction in wi does restricts the firm’s set of

production possibilities implying, when the restriction is binding, a reduction in i’s optimal output.

Now let pc
t be the market clearing price that satisfies

N∑
i=1

S it
(
pc

t , sit,wt
)

= D̃t
(
pc

t
)
. (1)

Due to the uniform price setting, each firm gets paid S it
(
pc

t , sit
)
pc

t . Hence, firm i’s ex post profit,

upon the realization of the market clearing price, pc
t , is

πit = S it
(
pc

t , sit,wt
)
pc

t −Cit
(
S it

(
pc

t , sit,wt
)

; sit
)
. (2)

The most important source of uncertainty in the profit equation above is pc
t . In a strategic equilib-

rium, the uncertainty in pc
t , from the perspective of firm i, comes from two factors: the uncertainty

in market demand, D̃t, and the unobserved components of i’s competitors’ profit maximization

9



problems, that is, their marginal cost signals, s−it.

Following Wilson (1979), in the Bayes-Nash equilibrium of the game firms’ strategies are of

the form S it(p, sit,wt). Thus, as in Hortacsu and Puller (2008) we define a probability measure over

the realizations of pc
t , conditional on firm i’s private information, sit, the observed stocks, wt, and

the fact that firm i submits the supply schedule, Ŝ it(p), while its rivals are playing their equilibrium

bidding strategies,
{
S jt(p, s jt,wt), j ∈ −i

}
,

Hit

(
p, Ŝ it(p); sit,wt

)
≡ Pr

(
pc

t ≤ p | sit,wt, Ŝ it(p)
)
. (3)

Using the market clearing condition (1), we can rewrite this probability distribution as

Hit

(
p, Ŝ it(p); sit,wt

)
= Pr

 N∑
j∈−i

S jt(p, s jt,wt) + Ŝ it(p) ≥ D̃t(p)

∣∣∣∣∣∣ s jt,wt, Ŝ it(p)


=

∫
s jt×εt

1

 N∑
j∈−i

S jt(p, s jt,wt) + Ŝ it(p) ≥ D̃t(p)

 dF
(
s jt, εt | sit,wt

)
.

(4)

Assuming risk-neutrality, we can now rewrite the bidder’s expected payoff maximization problem

max
Ŝ it(p)

∫ p̄

p

[
pŜ it(p) −Cit

(
Ŝ it(p); sit

)]
dHit

(
p, Ŝ it(p); sit,wt

)
, (5)

where the expectation is taken over all possible realizations of the market clearing price, weighted

by the probability density, dHit(·). Following Hortacsu and Puller (2008), we derive the following

Euler-Lagrange necessary condition for the (pointwise) optimality of the supply schedule S ∗it(p)

p = C′it
(
S ∗it(p); sit

)
+ S ∗it(p)

HS

(
p, S ∗it(p); sit,wt

)
Hp

(
p, S ∗it(p); sit,wt

) , (6)
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where

HS
(
p, S ∗it(p); sit,wt

)
≡

∂

∂S it
Pr

(
pc

t ≤ p | sit,wt, S ∗it(p)
)
,

Hp
(
p, S ∗it(p); sit,wt

)
≡
∂

∂p
Pr

(
pc

t ≤ p | sit,wt, S ∗it(p)
)
.

Hence, in the static equilibrium, each firm i’s bid price will be equal to the marginal production

cost plus a markup term. Hortacsu and Puller (2008) interpret Hp

(
p, S ∗it(p); sit,wt

)
as the “density”

of the market clearing price conditional on firm i’s bid schedule S ∗it(p), and HS

(
p, S ∗it(p); sit,wt

)
as

term that captures i’s “market power”. Intuitively, (6) shows that in the multi-unit auction setting

bidders trade off between bidding a price sufficiently high that results in a higher market clearing

price, and bidding a lower price in order to increase its own probability of being dispatched (see

von der Fehr and Harbord (1993)). Thus, for a firm with significant market power the first effect

will dominate the second and it will be optimal for that firm to bid over its marginal cost.

We highlight two relevant implications from the first order condition in (6). The most relevant

implication is that, since Hp and HS are both nonnegative, bid prices will never be less than the

marginal production costs. The other relevant implication is that the extend to which firm i is

able to exercise market power is restricted by strategic interactions. These occurs because the

distribution of the market clearing price, and thus Hp and HS , depends on the strategies of i’s rivals.

Intuitively, an increase in the supply of firm i’s rivals will imply a drop in i’s probability of being

dispatched, keeping other things equal. Therefore, by the Bayes-Nash structure of the equilibrium,

firm i’s best response will be to reduce its markup.

3.2 Dynamic model

The formulation and notation of the dynamic model follow from the previous section. Time is

discrete with an infinite horizon, t = 1, 2, . . .. We assume that future demand is not known to the

firms at time t, but the distribution function Fε(·) is common knowledge.
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Let the vector z (with support Z) indicate the amount of electricity each firm has to produce as

a result of the auction outcome. Water inflows to the dam are realized after the auction ends and is

denoted by δi. We assume δi follows a first-order Markov process Fδ(δit | δit−1). Now, let W denote

the support of w. Then, the transition function of the firms’ state variable ω : W × Z × ∆ → W

is a deterministic function of the state variables, the auction outcome, and the realized inflows.

This function updates the water stock of each of the firms as follows. The i-th component of the

transition function is given by

ωi(w, z) = wi − zi + δi. (7)

where zi = S i(p) when the price p satisfies market clearing condition

S i(p) = D̃(p) −
∑
j∈−i

S j(p). (8)

Bidders discount the future with a common discount factor β ∈ (0, 1). The discount factor is

constant over time and known to the econometrician and to all bidders.

Conditional independence of demand, marginal cost, and inflows realizations is a crucial as-

sumption that allows us to adopt a Markovian dynamic decision process. We consider a Markov-

perfect equilibrium concept (and restrict to symmetric strategies). This means that the equilibrium

strategies do not depend on time. Let S i(p, sit,wt, δit) be i’s strategy.

Since the outcome of the auction affects not only current profits but also the firm’s water stock,

firms choose their bids in order to maximize the expected discounted value of future profits. There-

fore, the discounted sum of future expected payoffs for bidder i can be written in value function

form as (dropping the t subscript)

Mi (si,w, δi, S −i) = max
Ŝ i(p)

{∫ p̄

p

[ (
pŜ i(p) −Ci

(
Ŝ i(p); si

))
+ βEs′i ,w′,δ

′
i

[
Mi

(
s′i ,w

′, δ′i , S
′
−i
)]]

× dH
(
p, Ŝ i(p); si,w

)}
.

(9)

It is convenient to write the maximization problem at the beginning of a period, prior to the real-
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ization of the private signal and prior to the realization of the demand. Therefore, we define the ex

ante value function as

Vi(w, S −i) = Es′i ,w′,δ
′
i
[Mi (si,w, δi, S −i)] . (10)

Due to the Markov structure of the problem, equation (10) can be written recursively as follows,

dropping the dependence on rivals’ bidding strategies for notational simplicity,

Vi(w) = Es′i ,w′,δ
′
i ,z

[
max
Ŝ i(p)

{∫ p̄

p

[(
pŜ i(p) −Ci

(
Ŝ i(p); si

))
+ βVi

(
ω
(
w, Ŝ i(p)

))]
× dH

(
p, Ŝ i(p); si,w

)}]
.

(11)

Therefore, the Euler-Lagrange necessary condition when strategy is optimal S ∗i (p) in the dynamic

equilibrium is given by1

p = C′(S ∗i (p); si) + Θ
(
p, S ∗i (p); si,w

)
+ β

Ψi
(
ω
(
w, S ∗i (p)

))
−

∑
j∈−i

Ψ j
(
ω
(
w, S ∗i (p)

)) , (12)

where

Θ
(
p, S ∗it(p); sit,wt

)
≡ S ∗it(p)

HS

(
p, S ∗it(p); sit,wt

)
Hp

(
p, S ∗it(p); sit,wt

)
Ψ j

(
ω
(
w, S ∗i (p)

))
≡

∂

∂ω j
Vi

(
ω
(
w, S ∗i (p)

))
.

Hence, in the dynamic equilibrium, the price will have an extra markup term that incorporates the

dynamic behavior of the firm. Notice that Ψi can be interpreted as the “shift” in firm i’s discounted

sum of future expected payoffs due to a change in its expected future stock, ωi. Analogously, the

sum of Ψ j represents the total shift in the sum of i’s future expected payoffs due to a variation in

the expected future stock of each one of i’s competitors j ∈ −i. Hence, this dynamic markup term

can be interpreted as firm i’s intertemporal opportunity cost of water.

1See Appendix A for a proof.
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Observe also that Ψi is nonngeative because, holding the market price and the current stock

constant, an increase in ωi weakly increases i’s sum of future expected payoffs. At the same time,

Ψ j is nonpositive because, holding everything else constant, a decline in the future water stock of

i’s rivals weakly increases the probability for i to be dispatched in future periods and thus its future

expected payoffs. Consequently, as in the static model, the equilibrium price of the dynamic model

is never below the production marginal cost of the firm. The intuition is as follows: assume, for

example, that the stock of water for future periods is expected to be low. Knowing this, firm i is

willing to produce a positive quantity only if the market price is sufficiently high to compensate the

discounted future payoffs that the firm is giving up by producing S ∗it(p).

3.3 Predictions

Equation (12) suggests that hydro producers will have incentives to withhold generation and in-

crease the market clearing price if the following condition holds:

∂

∂S ∗i (p)

Ψi
(
ω
(
w, S ∗i (p)

))
−

∑
j∈−i

Ψ j
(
ω
(
w, S ∗i (p)

)) > 0.

That is, firms will postpone generation if slightly increasing its current output also increases the

total value of future production that firm i expects to achieve by producing exactly S ∗i (p). Observe

also that, since the dynamic term in (12) depends on w, firm i’s incentives to increase its bid price

would also depend on its rivals’ actions.

We can sharpen the predictions of the model if we make a cuople of additional assumptions.

First, assume that firm i’s opportunity cost of current production is a nonincreasing function of its

own current stock and own future inflows:

∂

∂wi

Ψi
(
ω
(
w, S ∗i (p)

))
−

∑
j∈−i

Ψ j
(
ω
(
w, S ∗i (p)

)) ≤ 0 (13)

∂

∂δi

Ψi
(
ω
(
w, S ∗i (p)

))
−

∑
j∈−i

Ψ j
(
ω
(
w, S ∗i (p)

)) ≤ 0 (14)
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The intuition behind this assumption is that, an increase in either firm i’s current stock or future

inflows, implies as well an increase in its own future stock. This means that, for a given level of

current output, firm i is able to achieve higher levels of future output. There is thus a decline in

firm i’s opportunity cost because, for any future realization of the market clearing price, the total

value of future production that firm i gives up by keeping its current output constant is lower. For

the converse case, observe that when either firm i’s stock or expected inflow is relatively low, any

positive level of current output implies less water for future production. Therefore, for any future

realization of the market price, the total value of future production that firm i gives up by keeping

its current output constant increases.

The second assumption is that firm i’s opportunity cost of current production is a nonincreasing

function of its rivals’ current stock and its rivals’ future inflows. In other words, assume that for

any j , i
∂

∂w j

Ψi
(
ω
(
w, S ∗i (p)

))
−

∑
j∈−i

Ψ j
(
ω
(
w, S ∗i (p)

)) ≤ 0 (15)

∂

∂δ j

Ψi
(
ω
(
w, S ∗i (p)

))
−

∑
j∈−i

Ψ j
(
ω
(
w, S ∗i (p)

)) ≤ 0 (16)

Following the same argument we used in our previous assumption, an increase in firm j’s either

current stock or future inflows, implies an increase in j’s future stock. This means that, for a given

level of current output, j is able to achieve higher levels of future production. Other things equal,

this reduces the probability that the market clears at higher prices in the future. Thus, the expected

sum of future payoffs that firm i can achieve from withholding production in the current period

declines. Conversely, holding everything else constant, a decline in j’s current stock or future

inflows implies an increase in the probability of achieving future states of higher market prices.

Therefore, firm i’s cost of current output will increase for any given state of its own and expected

inflows.

With these assumptions in mind, we thus summarize the following testable predictions of our

model

15



1. Firm i’s equilibrium bid prices are nonincreasing in its current own water stock. From as-

sumption (13), we have that a decline in wit implies a greater opportunity cost for firm i.

According to first-order condition (12), i’s best response will be to withhold current produc-

tion by increasing the price it bids for any level of output. Therefore, ∂p/∂wit ≤ 0.

2. Firm i’s equilibrium bid prices are nonincreasing in its own expected inflows: From assump-

tion (14), ex ante lower expected inflows for its own dams implies a higher opportunity cost of

current production for firm i. Then, bidder i’s best response will be to increase its equilibrium

bid price whether to save water for future production or to set a market price sufficiently high

that compensates the expected value of withholding that i gives up by increasing its current

output. Therefore, ∂p/∂δit ≤ 0.

3. Firm i’s equilibrium bid prices are nonincreasing in its rivals’ water stock: Because of strate-

gic symmetry, prediction 1 implies that bidder j , i will submit a lower equilibrium bid price

when its current stock is relatively high. Also, from assumption (15), there is a decline in

firm i’s opportunity cost of current production. Also, other things equal, this implies a lower

probability for i to be dispatched in current period. Consequently, i’s best response will be to

bid lower prices. In other words, ∂p/∂w jt ≤ 0.

4. Firm i’s equilibrium bid prices are nonincreasing in its rivals’ expected inflows: By the same

logic of predictions 2 and 3, if bidder j , i expects its inflows to be relatively low, that

bidder’s best will be to increase its equilibrium bid price. Other things constant, this will

imply an increase in the probability of i to be dispatched. Hence, i’s best response will be to

increase its own bid as well. Therefore, ∂p/∂δ jt ≤ 0.

Below we empirically test these four predictions using detailed auction data of the Colombian

electricity market.
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4 The Colombian Electricity Market

In this section we present a brief description of the electricity market in Colombia and the auction

data used for our empirical analysis. We focus on the wholesale market, called the Mercado de

Energı́a Mayorista (MEM), where the price and quantity of produced electricity are defined (see

Carranza, Riascos, and Morán (2014) for a detailed description).

The wholesale electricity market in Colombia was established in 1994 when generation and

trade were deregulated. The MEM is a centralized market interconnected through the Sistema

Interconectado Nactional (SIN), a country-wide network. The main transactions in this market

involve four types of agents. Generators and retailers are the only active agents of the MEM.

Generators produce the electricity that is sold in the MEM. Retailers buy that electricity to sell it to

the final consumer. The other two agents, transmitters and distributors, are completely owned by

the State. Competition in transmission and distribution activities is possible only in projects for the

expansion of the network.

Trade and operation in MEM are coordinated by the Centro Nacional de Despacho (CND), the

market operator. The CND is responsible for the planning, supervision and control of the integrated

operation of generation resources and the transmission connectivity of the SIN. A subsidary of

the CND, the Administrador del Sistema de Intercambios Comerciales (ASIC), administrates all

monetary transactions made by the active agents of the MEM. Since 2005, both ASIC and CND are

administrated by XM, a subsidiary of Interconexión Eléctrica S.A. (ISA). Finally, all transactions

are monitored by the Comisión de Regulación de Energı́a y Gas (CREG), the regulatory agency.

The MEM consists of two separated markets: the forward market and the spot2 market. Most

electricity is traded in the forward market through bilateral contracts between generators and retail-

ers. However, the role of the forward market is merely a financial one. All production decisions are

centralized by the CND and defined in the spot market.

Procurement in the spot market occurs through a multi-unit uniform-price auction where gen-

2This is rather a day-ahead market since, as we describe in following sections, the energy price is calculated a day after
real-time production. Nevertheless, as in de Castro et al. (2014), we will follow the usual practice in Colombia and
refer to this market and its price as “spot market” and “spot price”, respectively.
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erators submit supply schedules to satisfy load demand in an hourly-period basis. The bidding

structure and the definition of the market price (spot price) differ across three different periods

since 1995. For our empirical analysis we focus on the 2001–2008 period when the auction format

was practically unchanged.

4.1 Productive structure

Generation technology is primarily hydroelectric (hydro) and themoelectric (thermal). During the

sample period, the dominant production technology was hydro with more than 63% of the total

installed capacity of the SIN (see Figure 2). More than 95% of hydro capacity was operated by

plants that use dams, while the reminder 5% belonged to run-of-river plants. Thermal plants ac-

counted for 32% of the total installed capacity, most of which are fueled by natural gas.3 The rest

of the capacity of the SIN belonged to producers using eolic technology (0.14%) and cogeneration

(0.18%), a technology that combines production of therm and electric energy.

In terms of aggregate production, the share of hydro generation is even higher. Between 2000

and 2013, the yearly generation was between 41,278 and 62,197 GWh, with an average growth

rate close to 4% (see Figure 1a). Under normal hydrological conditions hydro plants can reach

up to 91% of this generation. This productive structure, however, makes the Colombian electricity

industry very vulnerable to water scarcity periods, as pointed out by Stacchetti (1999). We illustrate

this in Figure 2a. In periods of droughts as those caused by El Niño in 1992-1993 and 2009-2010,

hydro generation share was close to 51% and 46%, respectively. Consequently, the spot price can

also be severely affected by these extreme weather conditions. Figure 2b shows the evolution of the

monthly average spot price. During the most severe events of El Niño in Colombia, the monthly

average spot price increased 3.5 times from June, 1997 to February, 1998 and 1.2 times from April,

2009 to April, 2010.

Producers in the MEM are registered as generators. A generator definition depends on whether

it uses hydro or thermal technology. In general, a generating firm may own more than one plant.

3We include combined cycle gas turbine power plants in the set of thermal technology.
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Figure 1: Evolution of the Productive Structure
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Within a given plant there may be more than one generation unit. Several hydro plants operating

with the same dam or river form a hydro chain. Thus a hydro generator is defined as a plant or

hydro chain (if that is the case) while a thermal generator is a generation unit of a thermal plant.

Generators in the MEM are also classified by size. This classification determines whether a

generator is subject to central dispatch, that is, if the generator must participate in the electricity

auction. Large generation units with a net effective capacity (NEC) above 20 MW are classified as

major generators. Major generators are always centrally dispatched. Generators with a NEC below

20 MW are called minor. Generally, minor generators are not subject to central dispatch; however,

when having a NEC between 10 an 20 MW, a minor generator may decide whether to be centrally

dispatched or not. During our period of study most generators in the SIN were minor, accounting
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Figure 2: Evolution of Hydro and Thermal Generation Shares and The Spot Price
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for 61% of the all generators and 4% of the installed capacity of the SIN, while major generators

accounted for about 34% of all the generators and almost 96% of total capacity (see Figure 3).

The third group consists of all generators that use cogeneration and those, not connected to the

SIN, that produce electricity for self-consumption called autogenerators. Neither autogenerators

nor cogenerators are centrally dispatched.

Table 1 presents the distribution of plants and installed capacity across the different types of

generation technologies at the end of 2008. The data shows that the majority of production capacity

is owned by less than 19% of the firms. This productive structure was dominated by three large
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Figure 3: Distribution of Installed Capacity
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companies: Emgesa, Empresas Públicas de Medellı́n (EPM) and Isagen. These firms owned more

than 56% of the SIN’s installed net capacity and almost 70% of the total water storage capacity.

The rest of production capacity was operated by 3 medium-size and 32 small firms. This structure

has not changed much since then.

Table 1: Distribution of the Installed Capacity, December 2008

Number Number Installed
Type of generation Firmsa Generators Capacity (MW) Share (%)

Hydro Dam 7 18 8,495 63.03
Run-of-river 22 84 502 3.72

Thermo Gas 14 17 3,551 26.34
Coal 3 3 700 5.19
Fuelb 1 1 187 1.39

Eolic 1 1 18 0.14

Cogeneration 5 7 25 0.18

Total 37 131 13,478 100

Source: Authors’ calculations based on data from XM.
a The number of firms is defined as the number of agents that operate the plants in each category (row)
as registered in the MEM. b Includes plants that use diesel, fuel-oil or a mix of gas and fuel.
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4.2 The Rules of the Spot Market

From 2001 to 2009, procurement in the spot market was made through a uniform-price, multi-unit

auction. All centrally dispatched generators were required always participate by submitting day-

ahead bids consisting of a unique price and an hourly schedule of the maximum available capacity

they expect to have for next day. Noncentrally dispatched generators, on the order hand, were not

supposed to participate in the auction. Instead, they decided to submit an hourly power schedule

they are willing to sell as price takers. The auction were conducted by the CND who defined a

daily generation schedule that satisfies demand at minimum generation costs.

The process is described as follows. Every day before 8:00 AM, firms submitted a day-ahead

bid schedule for each generator they owned.4 Using these bids, the CND made a generation sched-

ule that ensured energy supply at minimum production costs. This schedule, called economic

dispatch, consisted of the amount of electricity every generator was required to produce in order

to satisfy the expected demand for each hour of the next day. During the operation day, the CND

was responsible for adjusting the economic dispatch for available capacity changes, network re-

strictions and deviations of real demand from the forecast. The schedule that accounted for these

adjustments is called real dispatch. The day after, the CND conducted a multi-unit uniform-price

auction to compute the hourly spot price. The resulting schedule, called ideal dispatch, accounted

for observed information on demand and available capacity, assuming ideal network conditions.

The last generation unit dispatched was called the marginal generator and was only dispatched for

the residual demand not covered by the other dispatched generators. The spot price was set equal

to the price submitted by the marginal bidder. Finally, all ideally dispatched units were paid with

the spot price for to every kWh produced in the respective hour.

By Resolution CREG-55 of 1994 generators are required to bid according to their “variable

costs”, for thermal plants and their “water opportunity costs”, for hydro plants. In this paper, we

investigate if there are other determinants of the producers’ bidding behavior. In particular, we

4Generators that did not submit their bids before 8:00 AM entered in the auction with the bid schedules they submitted
in the last auction.
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analyze if generation firms in this market behave as suggested by our dynamic profit maximization

benchmark by testing the predictions of our model using data of the Colombian electricity market.

The data are described below.

4.3 Description of the Database

For our empirical analysis, we use information of centrally dispatched generators on bid prices,

demand levels, available capacity, water stocks and inflows, among other market variables from

2001 to 2008. The data is provided by XM and is public. The data also includes information on

coal prices from the Unidad de Planeación Minero Energética (UPME).5 We observe 2,922 days,

27 firms and 56 bidders (17 hydro and 39 thermal). During the sample period we also observe the

entry of 6 bidders, 7 cases of bidder withdrawal and 13 changes of owner. The final database is an

unbalanced panel of 146,542 observations.

Table 2 presents the definitions and units of measure of the variables included in our empirical

analysis. The difference between Avcapikt and Avcapcikt is that the former corresponds to the

expected available capacity that a centrally dispatched generator submits for the economic dispatch

while the latter is the realized available capacity for the ideal dispatch. The usable stock for a

given dam is defined as the amount of water stored above the respective minimum technical volume

(MTV). As for the CERE variable, also known as Costo Equivalente Real de Energı́a, is a reference

for the value of energy and is published every month by the CND to signal bidders expectations.

Some summary statistics are presented in Table 3.

5UPME is a special administrative unit attached to Ministerio de Minas y Energı́a (the Ministry of Mines and Energy)
responsible for planning energy mining development. See more at: http://www1.upme.gov.co
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Table 2: Definition of sample variables

Variable Unit of Measure Definition

Bidikt COP / KWh Price bid by generator i of firm k on day t

S tockikt GWh Aggregate usable stock in dams of generator i owned
by firm k on day t

Flowikt GWh Aggregate river flows that feed the dams of generator
i owned by firm k on day t

S izeikt MW Installed net effective capacity of generator i owned
by firm k on day t

Avcapikt
* MW Average available capacity bid by generator i owned

by firm k for production on day t

Avcapcikt
* MW Average realized available capacity of generator i

owned by firm k for production on day t at hour h

Prodikt
* GWh Total electricity produced by generator i owned by

firm k on day t

Csaleskt
* GWh Total electricity net contract sales of firm k on day t

Demdt
* GWh Total electricity consumed in Colombia on day t

Pricet
* COP / KWh Average spot price on day t

PCt
† USD / MBTU Average contract price observed on day t

CEREt
† COP / KWh CERE observed observed on day t

Coalt
† USD / TON Average price of coal for Colombian exports observed

on day t
* Also available in hourly basis.
† Original data are in monthly series.

Table 3: Descriptive Statistics of Sample Data

Variable Mean Std. Dev. Min Max Obs

Bid 281.42 330.58 23.85 3,947.87 146,542
Size 249.62 282.62 10.00 1,240.00 146,542
Avcapc 222.35 263.63 0.00 1,240.37 146,542
Prod 2.53 4.71 0.00 29.90 146,542
Csales 6.02 8.35 -2.41 35.75 54,966
Demd 131.28 13.82 89.61 160.05 2,922
price 68.99 20.83 29.52 182.80 2,922
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Table 4: Mean of Main variables by Type of Generation

Bid Net Effective Available Generation Net Contract
Year (COP/kWh) Capacity (MW) Capacity (MW) (GWh) Position (GWh)

Hydro Generators

2001 85.39 483.82 435.29 5.31 12.99
2002 92.55 486.98 451.72 5.55 14.12
2003 99.52 488.12 433.67 5.67 14.47
2004 106.89 489.12 437.02 6.01 15.43
2005 117.77 489.12 444.09 6.16 15.81
2006 142.01 489.18 438.78 6.38 16.22
2007 202.30 491.77 443.06 6.65 18.08
2008 214.41 491.76 447.38 6.91 20.28

Thermal Generators

2001 241.05 119.01 102.29 0.77 7.06
2002 255.97 118.75 106.33 0.73 7.37
2003 277.22 124.26 97.12 0.74 7.27
2004 330.83 133.69 117.92 0.71 7.84
2005 356.00 135.87 122.59 0.79 7.12
2006 355.34 137.43 123.45 0.83 9.14
2007 360.50 137.68 118.37 0.80 10.24
2008 710.97 137.01 118.23 0.67 10.68
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In Table 4, we compare the yearly sample means of the main variables between hydro and

thermal generators. For every year of the sample, hydro producers submit lower average bid prices

than do thermal generators. Although hydro plants that use dam are larger on average, thermal

capacity has grown faster than hydro. Average real production and net contract sales are also

higher for hydro producers.

Hydraulic variables include usable stock and river flows. Both variables are measured in equiv-

alent energy units (GWh).6 Table 5 presents the mean and standard deviation of both stock and

inflows by generator and its operating firm. Although BETANIA and PRADO were initially op-

erated by other firms, these periods are relatively small in our sample period. The largest dams

(in terms of equivalent energy units) are operated by GUATAPE (EPM), PAGUA7 (EMGESA),

and GUAVIO (EMGESA). These generators also receive the highest average inflows. In Figure

we present the evolution of the monthly average series of water stock and river flows for the three

largest generators in terms of storage capacity.

In the following section we present the methodology and estimation results of our empirical

analysis.

5 Empirical Analysis

We now test empirically if producers’ behavior in the Colombian electricity market is consistent

with our dynamic auction model, in which firms account for the strategic effects of their bids and

the intertemporal opportunity cost of water. In particular, we test the predictions of the model using

the data described above.

We regress different specifications of a reduced-form equation of equilibrium bids. The analysis

is divided in two major parts. In the first part, we estimate our reduced-form equation at the gener-

ator level using the full sample. Hence, we define linear equations of observed bids by individual

generators as function of its own and rivals’ current stock, and other controls. We incorporate the
6For generators that use more than one dam, all hydraulic variables correspond to aggregate measures.
7PAGUA is an hydroelectric chain composed by the plants of Paraiso and Guaca. This chain uses water from three
different dams.
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Table 5: Stocks and Inflows by Generator

Usable Stock (GWh) Inflows (GWh)

Firm Generator Mean Std. Dev. Mean Std. Dev.

CHIVOR CHIVOR 725.56 334.39 13.21 13.72

EMGESA PAGUA 3,343.14 576.02 15.47 13.95
GUAVIO 1,518.24 533.75 16.89 14.74
BETANIA* 108.51 34.21 6.04 3.51

EPM GUATAPE 3,604.17 487.47 16.95 10.09
LA TASAJERA 273.51 92.21 7.54 4.08
GUATRON 222.74 55.73 9.33 4.50
PLAYAS 78.63 19.28 5.62 3.39
PORCE II 28.91 15.02 4.90 2.39

EPSA CALIMA 136.80 59.67 0.55 0.39
SALVAJINA 88.71 46.61 2.80 1.71
PRADO* 34.06 16.38 0.57 0.74
ALBAN 9.46 7.41 5.33 2.71

ISAGEN JAGUAS 262.24 112.17 8.32 6.63
MIEL I 83.10 50.31 3.94 2.24
SAN CARLOS 37.65 20.59 3.06 3.03

URRA URRA 100.47 36.95 3.68 2.27
* Operated by other firms during the sample period.
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Figure 4: Evolution of Hydraulic Variables for the Three Largest Generators
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dynamic component of the model by including future realizations of each generator’s aggregate

river flow in the equilibrium bids equation as proxies of the bidders’ expectations of future inflows.

In the second part, we consider the hypothesis that not all generators bid optimally, since most

generation companies operate several generators. In particular, we consider two types of “optimal”

bidders. On one hand, we assume that large producers behave closer to our optimal benchmark

than smaller generators, and define a set of “large” bidders. On the other hand, we assume that each

multi-plant firm bidding behavior is closer the optimal benchmark for its “marginal” generator than
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for its other units, and define a set of “marginal” bidders for each generation company.

We stress that we do not estimate causal parameters but rather correlates that allows us to verify

if the data supports for the predictions of our model about the relationships between equilibrium

bids and the state variables. Accordingly, when looking at the estimation results we will focus

only on the sign and statistical significance of the estimated coefficients associated with the state

variables rather than on their magnitude. We focus only on hydro generators that use dams but our

results are robust to the inclusion of thermal generators8. We also exclude all observations with bid

prices above 600 COP/KWh.9

5.1 Full Sample Approach

We begin by defining the following reduced-form equation of equilibrium bids

Bidikt = η1Ostockikt + η2Rstockikt + µi + τt + εikt, (17)

where

Ostockikt = 100 ×
S tockikt

Maxstockikt
and Rstockikt = 100 ×

∑
j,i Ostock jkt∑

j,i Maxstock jkt
.

In other words, Ostockikt is generator i’s water stock defined as a fraction of its dam’s maximum

technical volume and Rstockikt as the weighted average of this fraction across i’s rivals.10 The terms

µik and τt are plant and year fixed effects, respectively. Finally εikt is the stochastic error term that

we assume to be uncorrelated with the regressors.

We expect η1 and η2 to be negative as suggested by predictions 1 and 3. Table 6 presents the

OLS estimates of equation (17) for hydro generators only. In Column 1 we run a simple regression

of generator i’s equilibrium bid on its current water stock. As suggested by the predictions of our

model, those generators facing a lower current stock bid, on average, higher prices. In the next three

8See Appendix B.
9These outliers account for less than 5% of total observations of the final database.
10For generators that use more than one dam, the maximum technical volume is defined as each generator’s aggregate

maximum technical volume.
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columns, this result remains unaffected even after we add plant and year fixed effects. In columns

5-8 we include the aggregate stock of generator i’s rivals. Although the estimated coefficient is

not of the expected sign, it’s statistically different from zero. This supports the hypothesis that,

conditional on its own stock, generator i’s equilibrium bid is correlated with its rivals’ stock. In

particular, the results suggest that, given its own stock, generator i’s will, on average, bid less

aggressively if its rivals’ aggregate stock increases. These results are robust to the inclusion of

thermal plants as shown in Table 11 of Appendix B.

Table 6: Regression Coefficients of Equilibrium Bids on Current Stock

Dependent variable: Equilibrium Bids

Ostock -0.805*** -0.626*** -0.787*** -0.635*** -0.917*** -0.794*** -0.882*** -0.785***
(0.017) (0.017) (0.016) (0.018) (0.019) (0.020) (0.018) (0.020)

Rstock 0.661*** 0.652*** 0.663*** 0.654***
(0.039) (0.036) (0.042) (0.038)

Plant FE NO YES NO YES NO YES NO YES
Year FE NO NO YES YES NO NO YES YES

Number of obs. 45,945 45,945 45,945 45,945 45,945 45,945 45,945 45,945
R2 0.05 0.35 0.08 0.36 0.06 0.35 0.08 0.36
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Overall, this evidence supports our prediction about a negative relationship between each gen-

erator’s equilibrium bid and its current stock. Furthermore, these findings provide strong evidence

in favor of strategic behavior. In a competitive environment, after controlling for its own state

variables, generator i’s equilibrium bid should not be correlated with its rivals state variables. Nev-

ertheless, we find that conditional on its own stock, generator i’s equilibrium bid is correlated with

its rivals’ current stock.

Future Inflow Expectations

In this subsection we account for the dynamic part of our model by including each generator’s future

river flows in the equilibrium bid equation as a proxy for future inflow expectations. In particular,

we use the realization of the bidder’s aggregate river flow one day ahead of current period. Notice

that, by using this measure, we are implicitly assuming perfect foresight of generator i about its
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own and rivals’ future inflows. Hence, the reduced-form equation of equilibrium bids is redefined

as

Bidikt = η1Ostockikt + η2Rstockikt + η3O f lowikt+1 + η4R f lowikt+1

+ x′iktγ + µi + τt + ϑt + εikt,

(18)

where

O f lowikt = 100 ×
Flowikt

Maxstockikt
and R f lowikt = 100 ×

∑
j,i O f low jkt∑

j,i Maxstock jkt
.

Analogously to the definition of the stock variables, O f lowikt+1 is the one day ahead realization of

generator i’s river flow defined as a fraction of its dam’s maximum technical volume and R f lowikt+1

as the weighted average of this fraction across i’s rivals. The term x′ikt is a vector of controls for

generator- and market-specific characteristics.

We expect η1, η2, η3 and η4 to be negative as suggested by predictions 1–4. The regression

coefficients are presented in Table 7. All specifications include plant and year fixed effects. As

controls we include: the generator’s relative size (S ize), defined as its installed capacity over the

aggregate market capacity; the firm’s contract net sales position (Csales); aggregate daily demand

(Demd); the total number of bidders that participate in the auctions; and the observed CERE and

coal price series.11 In Column 1 we regress each generator’s equilibrium bid on its own current

stock and future inflow. Both coefficients are of the expected sign. Hence, even when controlling

for the bidder inflows, bidder i’s equilibrium bid price is on average, higher when its own stock

decreases. Likewise, conditional on its own current stock, generator i bids less aggressively when

expecting a decrease in its future inflows.

In Column 2 of Table 7 we add the rivals’ stock variable and find that, as in previous results,

even after controlling for its own stock and future inflows (and other characteristics of the plant

and year), generator i’s equilibrium bid is statistically associated with its rivals’ aggregate stock.

In columns 3 and 4 we include the rivals’ inflow variable. Hence, even when conditioning on its

current stock and expected inflows, and its rivals’ stock, we find evidence supporting the hypothesis

11See Table 2 for the definitions of these variables.
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that the generator i’s bid price is negatively correlated with its rivals’ future inflows.

Table 7: Regression Results for Equilibrium Bids on Stocks and Inflows

Dependent variable: Equilibrium Bids

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Ostock -0.599*** -0.751*** -0.786*** -0.753*** -0.599*** -0.728*** -0.764*** -0.729***
(0.018) (0.021) (0.020) (0.021) (0.018) (0.020) (0.020) (0.020)

Oflow -1.483*** -1.386*** -1.289*** -1.548*** -1.454*** -1.388***
(0.105) (0.106) (0.111) (0.106) (0.106) (0.111)

Rstock 0.644*** 0.675*** 0.653*** 0.617*** 0.648*** 0.622***
(0.038) (0.038) (0.038) (0.040) (0.040) (0.040)

Rflow -4.901*** -2.279** -4.530*** -1.623*
(0.877) (0.923) (0.937) (0.981)

Controls NO NO NO NO YES YES YES YES
Plant FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES

Number of obs. 38,250 38,250 38,250 38,250 38,250 38,250 38,250 38,250
R2 0.41 0.41 0.41 0.41 0.42 0.42 0.42 0.42
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

The results are robust to the inclusion several controls for generator- and market-specific char-

acteristics. (See columns 5–8 of Table 7) Furthermore, when including of thermal plants in the

estimation sample we also obtained quite similar results. However, we find a rather positive rela-

tionship between generator i’s equilibrium bid and its rivals’ expected future inflow. (See Table 12

in Appendix B)

We also performed an exercise analogous to the one shown in Table 7 using different defini-

tions of inflows measures. In particular, we used: i) the realization of the bidder’s aggregate river

flow in the current period, ii) the realization of the bidder’s aggregate river flow for more than one

day ahead, and iii) the bidder’s accumulated river flows between previous and future periods. The

regression coefficients for these specifications are quite similar to those described in Table 7 sup-

porting the predictions of our model. However, we find that as we moved further to future periods,

the estimated correlation becomes weaker.

The bottom line for this part of our empirical analysis is that in all cases considered we find

strong support for our predictions In particular, we find that each generator’s bid price is negatively
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associated with its current stock and future inflows, which is consistent with predictions 1 and 2.

We also find evidence supporting for strategic interactions; that is, we find that, conditioning on

its own stock and inflows, and other characteristics, each generator’s equilibrium bid is correlated

with its rivals’ state variables.

Nevertheless, for the rivals’ stock variable, the sign of the estimated coefficient is always pos-

itive, contrary to prediction 3. This suggests that at least not all hydro generators bid as predicted

by our dynamic model. Several empirical works on electricity markets agree that only a subset of

bidders behave optimally as predicted by the theoretical models. (See Wolfram (1998), Hortacsu

and Puller (2008), and Ciarreta and Espinosa (2010)) Therefore, in the next subsection we focus

in some subsets of bidders that we believe behave more accordingly with our optimal dynamic

benchmark.

5.2 Optimal Bidder Approach

The Large-Bidder Approach

For our first definition of “optimal” bidder, we consider the hypothesis that the bidder’s size is

associated with its ability to set the market price, that is, its market power. Several studies in

the literature on electricity markets are consistent with this hypothesis. The works by von der

Fehr and Harbord (1993), Stacchetti (1999), Ciarreta and Espinosa (2010) and Hortacsu and Puller

(2008), for instance, consider size as a characteristic that enhances the firm’s ability to exercise

market power. In particular, Hortacsu and Puller (2008) find that, large firms performed close to the

static profit maximization behavior, while smaller firms significantly deviate from their theoretical

benchmark. Similarly, Ciarreta and Espinosa (2010) argues that larger generators are very often

price setters creating an incentive for this agents to shade their bids more than smaller generators.

In the same spirit of these studies, we assume that large bidders are more likely to influence the

market clearing price, and thus are more likely to exercise market power. In first-order conditions

(6) and (12), this is equivalent to assume that HS is higher for large bidders. Consequently, large

bidders will have more margin for strategic behavior and, therefore, will perform closer to our
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dynamic benchmark.

We begin by defining L as the set of large generators and DS ,i as equal to 1 if i < L and 0

otherwise. Thus, a modified version of equilibrium bid equation (18), that allows us to efficiently

estimate different coefficients for large bidders, can be written as follows

Bidikt = η1Ostockikt + η2Rstockikt + η3O f lowikt+1 + η4R f lowikt+1 + x′iktγ

+ DS ,i ×
(
ηDS

1 Ostockikt + ηDS
2 Rstockikt + ηDS

3 O f lowikt+1 + ηDS
4 R f lowikt+1 + x′iktγ

DS
)

+ εikt.

(19)

Note that each coefficient η1, η2, η3 and η4 can be interpreted as the average change in the equilib-

rium bid of a large bidder associated with a variation in the realized stocks and expected inflows. On

the other hand, each one of ηDL
1 , ηDL

2 , ηDL
3 and ηDL

4 is the average slope difference for the respective

state variable in the equilibrium bid equation between small and large generators. For example, the

average slope difference for the own stock variable between a small and a large generator is given

by
∂Bidikt

∂Ostockikt

∣∣∣∣∣
i<L
−

∂Bidikt

∂Ostockikt

∣∣∣∣∣
i∈L

= ηDS
1 .

Hence, we can verify if the bidding behavior is statistically different for the two groups of bidders

by performing a test of joint significance. In particular, we test the following linear hypotheses

H0 : ηDS
1 = ... = ηDS

4 = γDS
1 = ... = γDS

q = 0 (20)

H0 : ηDS
1 = ... = ηDS

4 = 0 (21)

where q is the number of controls included in xikt.

For this large-bidder approach, we expect η1, η2, η3 and η4 each to be negative in support for

the predictions of our dynamic model; and at least one of ηDL
1 , ηDL

2 , ηDL
3 and ηDL

4 to be statistically

different from zero in support for different bidding behavior between large and small generators.

We estimate equilibrium bid equation (19) using production and storage capacity as two sepa-
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Table 8: Large Capacity Hydro Generators

Production Capacity Storage Capacity

Ranking Generator (MW) Generator (GWh)

1 SAN CARLOS 1,240 PAGUA 5,750
2 GUAVIO 1,200 GUATAPE 4,905
3 CHIVOR 1,000 GUAVIO 2,484
4 PAGUA 600 CHIVOR 1,341
5 GUATAPE 560 LA TASAJERA 531
6 BETANIA 540 JAGUAS 511
7 GUATRON 512 GUATRON 423
8 ALBAN 439 BETANIA 322
9 PORCE II 405 CALIMA 304
10 MIEL I 396 MIEL I 240

Notes: production and storage capacity values correspond to the respective sample
period maximum.

rated size criteria for the definition of the large-bidder set. Table 8 shows the 10 largest generators

according to each of these two criteria. We construct four different large-bidder sets consisting of:

1) the top-10 largest generators in terms of production capacity; 2) the top-5 largest generators in

terms of production capacity; 3) the top-10 largest generators in terms of storage capacity; and 4)

the top-5 largest generators in terms of storage capacity.

The coefficient estimates are presented in Table 9. Columns 1-4 and 5-8 show the regression

results without and with controls. Additionally, we include quarter fixed effects to control for

potential seasonal shocks. We focus on the coefficients for large bidders.

Column 1 shows the results when the large-bidder set consists of the top-10 largest produc-

tion capacity hydro generators. All the large-bidder coefficient estimates associated with the state

variables are negative and significant at 1%. We find that the equilibrium bid submitted by (large)

generator i is, on average, higher when its aggregate stock is relatively low. Likewise, that genera-

tor will, on average, increase its bid price when expecting low inflows in the future. These results

also suggest that, conditional on its own stock and expected inflows, generator i’s bid is expected

to be higher when its rivals’ aggregate stock is low or when its rivals’ future inflows are expected

to be low. These results are robust to the inclusion of the control variables, as shown in Column 5.
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Table 9: Regression Coefficients for Equilibrium Bids on Stocks and Inflows, Large-Bidder Ap-
proach

Dependent variable: Equilibrium Bids

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Ostock -0.748*** -0.271*** -0.812*** -0.242*** -0.728*** -0.266*** -0.806*** -0.242***
(0.023) (0.018) (0.033) (0.020) (0.023) (0.018) (0.033) (0.021)

Rstock -0.220*** -0.365*** 0.039 -0.186*** -0.144** -0.298*** -0.109 -0.173***
(0.062) (0.073) (0.083) (0.062) (0.063) (0.076) (0.084) (0.064)

Oflow -0.999*** -0.320*** -3.923*** -4.219*** -0.997*** -0.360*** -3.552*** -4.125***
(0.121) (0.115) (0.390) (0.323) (0.119) (0.108) (0.382) (0.320)

Rflow -9.651*** -7.968*** -1.370 -0.736 -6.554*** -5.548*** 1.187 0.303
(0.973) (1.033) (1.355) (0.822) (1.019) (1.085) (1.395) (0.864)

DS×Ostock 0.203*** -0.568*** 0.140*** -0.589*** 0.074* -0.567*** 0.129*** -0.581***
(0.045) (0.034) (0.046) (0.035) (0.044) (0.033) (0.046) (0.034)

DS×Rstock 0.873*** 0.754*** 0.339** 0.578*** 0.680*** 0.590*** 0.580*** 0.514***
(0.189) (0.126) (0.169) (0.131) (0.193) (0.129) (0.172) (0.134)

DS×Oflow -0.601* -0.863*** 3.049*** 3.189*** -0.749** -0.919*** 2.467*** 2.918***
(0.343) (0.184) (0.413) (0.348) (0.351) (0.180) (0.405) (0.345)

DS×Rflow 12.303*** 4.276** -4.767* -4.461** 14.740*** 6.027*** -2.787 -0.040
(2.915) (1.871) (2.604) (1.988) (3.008) (1.943) (2.678) (2.059)

Controls NO NO NO NO YES YES YES YES
Plant FE YES YES YES YES YES YES YES YES
Quarter FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES

Linear restrictions tests
F-Test 1 19.98*** 89.36*** 20.24*** 84.89*** 32.39*** 64.42*** 21.05*** 68.19***
F-Test 2 19.98*** 89.36*** 20.24*** 84.89*** 11.46*** 90.40*** 17.21*** 81.10***

Number of obs. 38,250 38,250 38,250 38,250 38,250 38,250 38,250 38,250
R2 0.42 0.42 0.42 0.42 0.44 0.43 0.43 0.43
F-Test 1 evaluates the restriction that there are no differences in slopes between small and large bidders. F-Test 2
evaluates the restriction that there are no differences in slopes for the state variables between small and large bidders.
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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In columns 2 and 6 we restrict the large-bidder set to only the top-5 of largest production

capacity hydro generators. Both sets of coefficient estimates, without and with controls, are of

the expected sign. In general, when using this set, we obtain the same general conclusion about a

significant negative relationship between large generators’ equilibrium bids and the state variables,

as in the econometric exercise performed in columns 1 and 5 of Table 9.

A potential concern is that a bidder’s dynamic behavior might be more related with its storage

capacity, rather than its production capacity. For this reason, in the estimations shown in columns

3 and 4 we consider the top-10 and top-5 of the largest storage capacity hydro generators, respec-

tively. As with previous large-bidder sets, the coefficient estimates associated with generator i’s

current stock and future inflows are negative at 1% of significance. Hence, a large storage capac-

ity generator will, on average, bid more aggressively when facing a relatively high own stock or

when, conditional on its own stock, its future inflows are expected to increase. However, we cannot

always reject the null hypothesis that a large-storage generator’s bid is affected by its rivals’ aggre-

gate stock or future inflows. In fact, we only find a statistically negative relationship between i’s

equilibrium bids and its rivals’ aggregate stock for the top-5 large-storage bidders. These conclu-

sions remain practically unchanged with the inclusion of our set of control variables as shown in

columns 7 and 8.

We also find evidence in support for different bidding behavior between large and small bidders.

The results of the joint significance tests for each of the linear restrictions (20) and (21) are pre-

sented in Table 9 as F-Test 1 and F-Test 2, respectively. For all specifications, both null hypotheses

are rejected at 1% of significance.

In the analogous exercise with thermal generators we also find evidence in favor to our predic-

tions. The respective coefficient estimates are presented in Table 13 of Appendix B. These results

also support for both dynamic and strategic behavior. In particular, for a sample consisting on

the top-10 largest hydro generators plus the top-5 largest thermal generators suggest a significant

negative relationship between a large-bidder’s equilibrium bid en the state variables.

Summarizing, these findings for our large-bidder sets provide strong evidence in support of our
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predictions. In particular, we find that large generators in terms of production capacity perform

closer to our dynamic optimization benchmark than the set of largest storage capacity generators.

The Marginal-Bidder Approach

For our second definition of “optimal” bidder we need to drop our initial assumption that firms

submit independent bids for each generator they control. Instead, we hypothesize that firms coordi-

nate their generators’ bids to jointly maximize profits. This hypothesis is also supported by several

studies, such as von der Fehr and Harbord (1993), Wolfram (1998), Wolak (2003 and 2007), and

Ciarreta and Espinosa (2010). For instance, Ciarreta and Espinosa (2010) argue that a multi-plant

firm will account for the effect that its production decisions on one plant have on the profits it may

earn from the other sets it owns. Thus, any firm owning several units will calculate an optimal sup-

ply schedule to maximize joint profits. Likewise, the model proposed by Wolfram (1998) suggests

that a firm with multiple units will maximize joint payoffs by increasing the bid price of the unit

that is more likely to set the market clearing price.

In this part of our empirical analysis we follow this notion and consider the hypothesis that

each firm is able to coordinate its generators’ bid schedules. In particular, we assume that each firm

only bids optimally, according to our dynamic profit maximization benchmark, for the generator

that is more likely to be the “price setter” (marginal bidder). Our assumption is based on the

theoretical prediction of demand-reduction (see Ausubel and Cramton (2002)). Due to the uniform-

price setting, each bidder knows that the price it bids will affect the price paid to all the dispatched

generators. Hence, a multi-plant firm that maximizes joint profits will charge a greater markup its

highest-price inframarginal generator. Therefore, we expect that each firm performs closer to our

dynamic behavior benchmark for its marginal bidder, since the for this unit there is more room for

strategic behavior.

Although the rules of the MEM require firms to submit independent supply schedules for each

generator they own, Figure 5 shows a real example that is consistent with this assumption. In

this figure we present the daily equilibrium bids of a given firm that we named A during a six
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Figure 5: Bidding Pattern of Firm A
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months period. The spot price series correspond to the 7:00 PM demand period. When observed

by separated, A’s ability to “set” the market clearing price seems very low. Each bidder’s submitted

price can be less than a half of the spot price on one day and just above it on the other. However

when we take all its generators into account, the distance between the A’s bid price and the realized

spot price is less that 1% in almost 64% of the cases. We observe this same pattern for other 4

multi-plant firms with similar characteristics and for different demand hours and time periods.

We begin by defining Ik as the set of generators controlled by firm k. Hence, we define the

marginal bidder of firm k as the generator i∗ ∈ Ik such that the probability for k to set the market

clearing price with the price offer Bidi∗kt is maximized. Given this generic definition, we define DN,i

as equal to 1 if i , i∗ and 0 otherwise. Thus, we rewrite our equilibrium bid equation (18) at the

firm level as follows

Bidikt = η1Ostockkt + η2Rstockkt + η3O f lowkt+1 + η4R f lowkt+1 + x′ktγ

+ DN,i ×
(
ηDN

1 Ostockkt + ηDN
2 Rstockkt + ηDN

3 O f lowkt+1 + ηDN
4 R f lowkt+1 + x′ktγ

DN
)

+ εikt.

(22)

where

Ostockkt = 100 ×
∑

i∈Ik
S tockikt∑

i∈Ik
Maxstockikt

and Rstockkt = 100 ×
∑

i<Ik
S tock jkt∑

i<Ik
Maxstock jkt

.

In other words, Ostockkt is firm k’s aggregate stock defined as a fraction of its dams’ aggregate

maximum technical volume and Rstockkt as the weighted average of this fraction across k’s rivals.

Analogously, the river flow variables are redefined at the firm level as follows

O f lowkt = 100 ×
∑

i∈Ik
Flowikt∑

i∈Ik
Maxstockikt

and R f lowkt = 100 ×
∑

i<Ik
Flow jkt∑

i<Ik
Maxstock jkt

.

The variables in x′kt, originally available at the generator level, are also redefined in aggregates by

firm. Consequently, Rsizekt variable corresponds to the aggregate capacity of firm k as a fraction of

the system total capacity and Avcapkt is the total available capacity of firm k on day t. Additionally,
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the variable Nt is modified as the number marginal bidders on day t. Similarly, we include firm

fixed effects, µk, rather than plant fixed effects.

As in previous section, we adopt this specification to test for difference in slopes between

“marginal” bidders and the rest of hydro generators participating in the auction. Thus, each coeffi-

cient η1, η2, η3 and η4 corresponds to the average change in the equilibrium bid of firm k’s marginal

bidder associated with a variation in the realized stocks and expected inflows. Meanwhile, each

one of ηDN
1 , ηDN

2 , ηDN
3 and ηDN

4 is the average slope differences for the respective state variable in the

equilibrium bid equation between nonmarginal and marginal bidders. Therefore, the average slope

difference for the own stock variable between a nonmarginal and a marginal generator is given by

∂Bidikt

∂Ostockikt

∣∣∣∣∣
i,i∗
−

∂Bidikt

∂Ostockikt

∣∣∣∣∣
i=i∗

= ηDN
1 .

Also, we can verify significant differences of bidding behavior for the two groups of bidders by

testing the following linear hypotheses

H0 : ηDN
1 = ... = ηDN

4 = γDN
1 = ... = γDN

q = 0, (23)

H0 : ηDN
1 = ... = ηDN

4 = 0. (24)

For this marginal-bidder approach, we expect each of η1, η2, η3 and η4 to be negative in support

for the predictions of our dynamic model; and at least one of ηDN
1 , ηDN

2 , ηDN
3 and ηDN

4 to be statistically

different from zero in support for different bidding behavior between nonmarginal and marginal

bidders.

We estimate the equilibrium bid equation (22) for six different definitions of the marginal-

bidders set. For each criteria we consider the following measure of distance

dikt ≡ 1 −
Bidikt

Pricet
(25)

where Bidikt is the price bid by generator i of firm k on day t and Pricet is the average spot price
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on day t. Also, let Iikt be an indicator variable which equals 1 when |dikt| ≤ 1% and 0 otherwise

and denote T as the number of days in the full estimation sample. Hence, we define the marginal

bidder of firm k as the generator i∗ ∈ Ik such that:

M1:
∑T

t=1 Ii∗kt = max
i∈Ik

{∑T
t=1 Iikt

}
.

M2:
∑

t∈τ Ii∗kt = max
i∈Ik

{∑
t∈τ Iikt

}
, for a given year τ.

M3: di∗kt = min
i∈Ik
{|dikt|}, for a given day t.

M4: di∗kt = min
i∈Ik
{dikt | dikt ≥ 0}, for a given day t.

M5: di∗kt = min
i∈Ik
{|dikt| | −0.2 ≤ dikt ≤ 0.2}, for a given day t.

M6: di∗kt = min
i∈Ik
{dikt | 0 ≤ dikt ≤ 0.2}, for a given day t.

The coefficient estimates are presented in Table 10. Each column shows the eregression results

for a different set of marginal bidders satisfying each of the six conditions defined above. For this

approach, we also include quarter fixed effects. Below we discuss these results focusing only the

coefficients for the marginal bidders.

Column 1 shows the coefficient estimates of equation (22) using a set of marginal bidders

satisfying condition M1. This set takes each firm’s most frequent marginal bidder during our sample

period. All the coefficient estimates associated with the state variables are negative and significant

at 1%. We find that firm k submits a higher bid price for its most frequent marginal bidder when

its aggregate stock decreases. Likewise, that firm will, on average, increase its bid price for its

most frequent marginal bidder when expecting low future inflows. These results also support for

strategic interactions. Conditional on its current stock and future inflows, firm k’s marginal bid is

expected to be higher when its rivals’ aggregate stock is low or when its rivals’ future inflows are

expected to be low.

A potential concern about using condition M1 is that whether the firm systematically submits

its closest bid to the ex post spot price with the same generator or if it eventually switches to other

generators. We address this concern by making some refinements to our marginal-bidder set. In
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Table 10: Regression Coefficients for Equilibrium Bids on Stocks and Inflows, Marginal-Bidder
Approach

Dependent variable: Equilibrium Bids

Variables (1) (2) (3) (4) (5) (6)

Ostock -0.518*** -0.620*** -0.652*** -0.119*** -0.178*** -0.146***
(0.033) (0.035) (0.036) (0.010) (0.011) (0.013)

Rstock -0.930*** -0.583*** -0.815*** -0.487*** -0.956*** -0.875***
(0.099) (0.091) (0.098) (0.035) (0.038) (0.042)

Oflow -7.433*** -7.781*** -7.167*** -0.402*** -0.901*** -0.756***
(0.586) (0.601) (0.583) (0.127) (0.143) (0.157)

Rflow -10.423*** -7.931*** -9.671*** -6.076*** -6.326*** -7.509***
(1.435) (1.558) (1.452) (0.481) (0.477) (0.516)

DN×Ostock -1.130*** -0.817*** -0.898*** -1.235*** -1.136*** -0.974***
(0.070) (0.057) (0.074) (0.052) (0.048) (0.042)

DN×Rstock 1.316*** 0.720*** 1.115*** 0.574*** 1.194*** 1.015***
(0.136) (0.101) (0.136) (0.098) (0.103) (0.094)

DN×Oflow 8.430*** 8.820*** 6.752*** -0.922 -5.519*** -3.904***
(1.071) (1.003) (1.089) (0.783) (0.751) (0.650)

DN×Rflow 13.304*** 9.251*** 11.758*** 10.246*** 7.024*** 6.704***
(2.059) (2.047) (2.087) (1.627) (1.569) (1.453)

Controls YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES
Quarter FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Linear restrictions tests
F-Test 1 54.23*** 57.00*** 36.74*** 178.97*** 141.80*** 157.24***
F-Test 2 102.38*** 93.93*** 65.43*** 166.52*** 221.36*** 196.40***

Number of obs. 38,501 38,501 38,501 38,501 38,501 38,501
R2 0.41 0.41 0.40 0.49 0.41 0.35
F-Test 1 evaluates the restriction that there are no differences in slopes between nonmarginal and
marginal bidders. F-Test 2 evaluates the restriction that there are no differences in slopes for the
state variables between nonmarginal and marginal bidders. Robust standard errors in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Column 2 we use condition M2, where we consider the possibility that the identity of firm k’s most

frequent marginal bidder changes from one year to another. All coefficients remain of the expected

sign, suggesting a statistically negative relationship between firm k’s marginal bid and each of the

state variables. This general result also remains practically unchanged when we consider possibility

of a more sort run “switching” behavior. In Column 3 we estimate equation (22) with a marginal-

bidder set satisfying condition M3, where the identity of firm k’s marginal bidder can change from

one day to another. As in previous exercise, the results the sign and significance of the coefficients

remain practically unchanged.

A more restrictive approach is shown in Column 4, where by condition M4 we only consider

as marginal bidders those included in M3 that bid below the ex post spot price. This definition

of marginal bidder excludes uni-plant firms are less likely to be dispatched. As pointed out by

Wolfram (1998), since the probability that these bidders affect the market clearing price is very low,

it is not likely that the behave optimally. The results for this regression still suggest a significant

negative relationship between firm k’s marginal bid and each of the state variables.

Using conditions M5 and M6 we restrict further the marginal-bidder definition by excluding

those bidders whose submitted prices are substantially far from the ex post realized spot price. Be-

cause of condition M5, the data used for the results in Column 5 excludes firms whose marginal bid

price is farther than 20% from the ex post spot price.12 Condition M6 is even more restrictive since

is it only considers the firms whose marginal bid price is not above the ex post spot price. Using

these conditions we increase the probability of having a sample where the firms that systematically

deviate from our dynamic optimization benchmark have a low weight in the estimation.

In columns 5 and 6 of Table 10 we obtain similar results concerning the coefficients associated

with the state variables, for both conditions M5 and M6, respectively. Again, we find that all these

coefficients are statistically negative at 1% of significance. Thus, other things equal, firm k submits

a higher bid price for its marginal bidder when its aggregate stock decreases. At the same time,

conditional on its current aggregate stock, if that firm expects low future inflows, the equilibrium

12Other distance values such as 5%, 15% and 30% result in exactly the same marginal-bidders set implying no differ-
ences in the estimation outcomes.
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bid price for its marginal bidder is expected to be higher. This correlation is particularly more

severe for the M5 definition than for the M6 one. These results also support for strategic behavior.

In particular, the results suggest that, conditional on its current stock and future inflows, firm k’s

marginal bid is expected to be higher when its rivals face a low aggregate stock or low expected

inflows in the future.

The results also support for the marginal-bidder approach as there is statistical evidence sug-

gesting that marginal bidders behave differently from the rest of generators. The results of the joint

significance tests for each of the linear restrictions (23) and (24) are presented in Table 10 as F-

Test 1 and F-Test 2, respectively. For all specifications, both null hypotheses are rejected at 1% of

significance.

There is also empirical evidence in support for dynamic and strategic behavior when including

thermal generators. The respective results are presented in Table 14 of Appendix B. For all samples

we find a negative relationship between a marginal generator’s bid and the firm’s state variables.

Moreover, for the samples satisfying conditions M4, M5 and M6 the results perform better accord-

ing to our predictions. All the coefficient estimates associated with the state variables are negative

and significant at 1%.

Overall, we consider these findings as strong evidence in support of our predictions. At the firm

level, the empirical results are supporting our predictions. In particular, we find that, according to

our specific definitions, each firm performs closer to our dynamic optimization benchmark at its

marginal generator.

6 Conclusions

In this paper we investigate if the market prices of a deregulated electricity market respond to other

determinants different from production costs. In particular, we analyze if the bidding behavior

of generation firms of an hydropower dominated electricity market is consistent with a dynamic

profit maximization benchmark. To assess this, we propose a dynamic multi-unit auction model
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characterized by a perfect Markovian Equilibrium based on the studies of Hortacsu and Puller

(2008) and Balat (2014). Our model suggests that when the intertemporal opportunity cost of

water is sufficiently high, hydro producers will submit bids above its marginal production costs

whether to save water for future production or to set a market price that maximizes its payoffs.

There is thus a significant negative relationship between each firm’s equilibrium bid prices and

the state variables; specifically, its own stock, own expected inflows, its rival’s stock and its rivals

expected inflows.

We test the predictions of our model using data of the Colombian electricity market where

hydro producers hold more 63% of total installed capacity. Overall, the regression results provide

evidence in support of both dynamic and strategic behavior. A given firm’s bid price is negatively

correlated with its own current aggregate stock. Results also suggest that, given its own stock,

that firm will, on average, bid less aggressively if its rivals’ aggregate stock is relatively low. At

the same time, higher bid prices are associated with low expected inflows. A given bidder will

submit higher bid prices when expecting low inflows for its rivals’ dams. We also find evidence

supporting the hypothesis that bidding behavior of different sets of “optimal bidders” is closer to

our notion of dynamic profit maximization. Our findings are robust to different specifications,

different definitions of future inflows and different sets of bidders.
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Appendix A Derivation of the First-Order Condition of Optimality for

the Dynamic Model

We begin by solving the integral inside the maximum operator in equation (11). Integration by

parts yields a constant term plus the flowing:

L
(
p, Ŝ i(p), Ŝ ′i(p)

)
= −

Ŝ i(p) +
(
pŜ i(p) −C′i

(
Ŝ i(p)

))
Ŝ ′i(p) + β

∑
j∈−i

∂Vi

∂ω j
−
∂Vi

∂ωi

 Ŝ ′i(p)

 H
(
p, Ŝ i(p)

)
.

The Euler-Lagrange necessary condition for L
(
p, Ŝ i(p), Ŝ ′i(p)

)
to be maximized at S ∗(p) is given

by:
d

dp
LS ′ = LS .

The respective derivatives are defined as follows

−LS = HS S i + HS S ′i

p −C′i + β

∑
j∈−i

Ψ j − Ψi


 + H

1 + β

∑
j∈−i

∂Ψ j

∂S i
−
∂Ψi

∂S i

 S ′i


−LS ′ = H

p −C′i + β

∑
j∈−i

Ψ j − Ψi




Now, by taking the total derivative of LS ′ with respect to p, we obtain

−
d

dp
LS ′ =

(
Hp + HS S ′i

)p −C′i + β

∑
j∈−i

Ψ j − Ψi


 + H

1 + β

∑
j∈−i

∂Ψ j

∂S i
−
∂Ψi

∂S i

 S ′i


Hence, after canceling some terms, we obtain

Hp

p −C′i + β

∑
j∈−i

Ψ j − Ψi


 = HS S i,

which is implies that

p = C′i + S i
HS

Hp
+ β

Ψi −
∑
j∈−i

Ψ j

 .
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Appendix B Empirical Results When Including Thermal Plants

In this appendix we show the results of the empirical exercises performed in Section 5 when includ-

ing thermal generators in the respective samples. Accordingly, we adjust the definitions of Ostockit

and O f lowit as

˜Ostockit =


Ostockit, if i uses dam

0, otherwise
and ˜O f lowit =


O f lowit, if i uses dam

0, otherwise

By the same logic, we adjust the definitions of Ostockkt and O f lowkt for the estimations at the firm

level as

˜Ostockkt =


Ostockkt, if k controls a dam

0, otherwise
and ˜O f lowit =


O f lowkt, if k controls a dam

0, otherwise

Note that for corresponding versions of the equilibrium bid equation, the coefficients η1 and η3 are

interpreted as the interaction between having a dam and the respective value of aggregate stock

and river flow, respectively. As an additional control for the difference between the two generation

technologies, we include a thermal dummy variable Dt for the intercept of the equilibrium bid

equation.

Table 11 presents the results for the analogous to the one exercise performed in 6. The results

are quite similar to those presented in Table 6, even for all different combinations of plant and

year fixed effects. Also, we find that, as expected, thermal generators submit higher bid prices. In

particular, this difference is around 130 COP/KWh on average.

The inclusion of thermal plants, however does change some of the results describes in Table 7.

We present this in Table 12. For this sample, we find that the sign of the coefficient associated with

the rivals’ inflow variable becomes positive for all combinations of fixed effects an controls. The

rest of the coefficients remain practically unchanged, except for that associated with rivals’ stock

which seems to increase in size.
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Table 11: Regression Coefficients of Equilibrium Bids on Current Stock (Hydro and Thermal Bid-
ders)

Dependent variable: Equilibrium Bids

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Ostock -0.805*** -0.626*** -0.640*** -0.539*** -0.934*** -0.874*** -0.762*** -0.761***
(0.017) (0.017) (0.018) (0.018) (0.018) (0.019) (0.018) (0.020)

Rstock 0.756*** 0.963*** 0.890*** 1.023***
(0.033) (0.029) (0.034) (0.029)

Plant FE NO YES NO YES NO YES NO YES
Year FE NO NO YES YES NO NO YES YES

Number of obs. 127,135 127,135 127,135 127,135 127,135 127,135 127,135 127,135
R2 0.29 0.51 0.35 0.55 0.29 0.51 0.35 0.55
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 12: Regression Results for Equilibrium Bids on Stocks and Inflows (Hydro and Thermal
Generators)

Dependent variable: Equilibrium Bids

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Ostock -0.503*** -0.730*** -0.775*** -0.720*** -0.500*** -0.695*** -0.732*** -0.682***
(0.019) (0.020) (0.020) (0.020) (0.019) (0.020) (0.020) (0.020)

Oflow -1.651*** -1.502*** -2.208*** -1.496*** -1.343*** -2.014***
(0.121) (0.122) (0.133) (0.122) (0.123) (0.133)

Rstock 1.021*** 0.975*** 0.962*** 1.018*** 0.977*** 0.965***
(0.029) (0.029) (0.029) (0.031) (0.031) (0.031)

Rflow 15.079*** 16.801*** 15.229*** 16.821***
(0.796) (0.816) (0.828) (0.848)

Controls NO NO NO NO YES YES YES YES
Plant FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES

Number of obs. 126,877 126,877 126,877 126,877 126,877 126,877 126,877 126,877
R2 0.54 0.55 0.55 0.55 0.55 0.55 0.55 0.56
Robust standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 13 presents the large-bidder results with thermal generators. For obvious reasons, here we

only consider the production capacity criteria for the definition of large bidder. In columns 1 and 3

we show the regression results for a sample consisting on the top-10 largest hydro generators plus

the top-5 largest thermal generators TEBSAB, TERMOSIERRAB, FLORES 1, FLORES 2 and

FLORES 3. The coefficient estimates associated with the state variables are of the expected sign

and significant at 1%, without and with controls. In Column 3, however, the coefficient of the rivals’

inflow variable is not statistically significant. In columns 2 and 4 we show the regression results for

a sample consisting on the top-5 largest hydro generators plus TEBSAB and TERMOSIERRAB.

The coefficient estimates associated with own stock and own inflows remain negative and signifi-

cant at 1%. However, the coefficients of the rivals’ stock and inflow are statistically positive and

not different form zero, respectively.

Table 14 presents the marginal-bidder results with thermal generators. In columns 1-3 we show

the respective results for conditions M1, M2 and M3. On one hand, the coefficient estimates as-

sociated with own stock and own inflows are negative and significant at 1%. On the other, those

coefficients associated with rivals’ stock and rivals’ inflows are statistically positive in most cases.

Although not of the expected sign, these results still provides strong evidence in support for strate-

gic behavior in the sense that, conditional on its own states, a firm’s equilibrium bid also depends on

its rivals’ states. In columns 4-6 for conditions M4, M5 and M6, respectively, the results perform

better according to our predictions. All the coefficient estimates associated with the state variables

are negative and significant at 1%.
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Table 13: Coefficients Estimates for Equilibrium Bids on Stocks and Inflows, Large-Bidder Ap-
proach (Hydro and Thermal)

Dependent variable: Equilibrium Bids

Variables (1) (2) (3) (4)

Ostock -0.668*** -0.382*** -0.568*** -0.381***
(0.025) (0.020) (0.024) (0.020)

Rstock -0.304*** 0.385*** -0.172** 0.390***
(0.085) (0.084) (0.084) (0.090)

Oflow -1.293*** -1.062*** -0.949*** -0.915***
(0.129) (0.137) (0.131) (0.135)

Rflow -3.028** 0.143 -1.954 -0.605
(1.299) (1.332) (1.300) (1.350)

Dt 142.585*** 210.328*** 247.973*** 205.171***
(3.419) (6.676) (4.158) (55.746)

DL×Ostock 0.210*** -0.322*** 0.084* -0.305***
(0.044) (0.035) (0.044) (0.035)

DL×Rstock 2.124*** 0.827*** 2.045*** 0.949***
(0.125) (0.115) (0.129) (0.122)

DL×Oflow -0.028 -0.098 -0.469 -0.122
(0.362) (0.211) (0.365) (0.211)

DL×Rflow 12.469*** 5.517*** 10.124*** 5.606***
(1.873) (1.763) (1.903) (1.799)

DL×Dt -156.100*** -81.338*** 351.502*** -202.770***
(6.705) (6.115) (57.486) (52.729)

Controls NO NO YES YES
Plant FE YES YES YES YES
Quarter FE YES YES YES YES
Year FE YES YES YES YES

Restricted model linear test
F-Test 1 103.93*** 34.90*** 150.08*** 75.21***
F-Test 2 103.93*** 34.90*** 76.53*** 35.42***

Number of obs. 106,068 106,068 106,068 106,068
R2 0.58 0.57 0.59 0.58
F-Test 1 evaluates the restricted model where all slopes are not different
between the full sample and the Large bidders sample. F-Test 2 evaluates
the restricted model where the slopes of the state variables are not different
between the full sample and the Large bidders sample. Robust standard
errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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Table 14: Coefficients Estimates for Equilibrium Bids on Stocks and Inflows, Marginal-Bidder
Approach (Hydro and Thermal)

Dependent variable: Equilibrium Bids

Variables (1) (2) (3) (4) (5) (6)

Ostock -0.728*** -0.323*** -0.661*** -0.095*** -0.169*** -0.124***
(0.033) (0.031) (0.032) (0.010) (0.010) (0.011)

Rstock 0.412*** 0.023 0.229*** -0.528*** -0.782*** -0.753***
(0.085) (0.074) (0.082) (0.034) (0.037) (0.039)

Oflow -9.331*** -7.839*** -8.780*** -0.640*** -0.933*** -0.772***
(0.620) (0.599) (0.589) (0.135) (0.148) (0.163)

Rflow 0.044 -2.925** 2.085* -7.685*** -4.795*** -6.510***
(1.258) (1.224) (1.201) (0.461) (0.422) (0.454)

Dt -58.630*** -56.739*** -66.081*** -23.408*** -31.825*** -24.361***
(7.476) (7.095) (7.177) (1.588) (1.760) (1.929)

DN×Ostock 0.488*** -0.377*** 0.301*** -0.413*** -0.280*** -0.333***
(0.061) (0.039) (0.060) (0.041) (0.040) (0.037)

DN×Rstock 0.246* 1.072*** 0.529*** 1.183*** 1.376*** 1.314***
(0.131) (0.096) (0.127) (0.079) (0.081) (0.077)

DN×Oflow 8.661*** 4.356*** 8.533*** -2.410*** -6.466*** -5.587***
(1.105) (1.022) (1.112) (0.767) (0.742) (0.658)

DN×Rflow 4.334** 10.223*** 1.169 11.474*** 9.429*** 10.307***
(1.930) (1.866) (1.868) (1.254) (1.243) (1.208)

DN×Dt 366.355*** 234.667*** 285.964*** 21.374** -122.265*** -99.359***
(52.792) (36.010) (49.302) (8.820) (8.727) (7.593)

Controls YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES
Quarter FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Restricted model linear test
F-Test 1 209.15*** 300.24*** 510.86*** 1023.28*** 830.92*** 1024.65***
F-Test 2 45.38*** 67.43*** 32.44*** 104.63*** 120.59*** 133.12***

Number of obs. 106,324 106,324 106,324 106,324 106,324 106,324
R2 0.53 0.53 0.56 0.57 0.54 0.53
F-Test 1 evaluates the restricted model where all slopes are not different between the full sample and
the Marginal bidders sample. F-Test 2 evaluates the restricted model where the slopes of the state
variables are not different between the full sample and the Marginal bidders sample. Robust standard
errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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