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Abstract

This paper presents two versions of a spatial competition model for
the banking sector. The first version, describes a framework that fol-
lows closely Salop’s spatial competition model. This version is modi-
fied in the second part by introducing the loan market and default risk
probabilities for credit. Both theoretical approaches are analyzed em-
pirically for the Colombian data,covering the period 1996-2005. Our
results allow us to construct a deviation of the observed number of
branches from an optimal number of branches for the banking system
throughout the period of study. The deviation indicates that in the
last years the number of branches is below the optimum which sug-
gest that political measures should focus in increasing the number of
branches in the country. Additionally, we found empirical evidence
of market separability between the loan and deposit markets, and fi-
nally, we were able to determine the signs of the relations between
credit collateral, payment probability and interest rates.
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ments of Carlos Amaya. As usual, the opinions contained herein are those of the authors
and do not necessarily represent those of the Banco de la República or that of its Board
of Directors. Any comments and suggestions can be sent to c-srozo@minhacienda.gov.co,
dvasques@banrep.gov.co or destrada@banrep.gov.co.

1



1 Introduction

In the last years, international literature has outlined the importance of spa-
tial variables in the analysis of banks’ strategic behavior1. Three main facts
explain their introduction in competitive and efficiency models. First, they
recognize the service variable within the competitive variables of banking
institutions. Second, they introduce the access costs that customers assume
when they demand banking services. Even though technology has presented
a huge progress in the last years, the negative relation between distance from
a bank and utility for the customer is still obvious2. Finally, they evalu-
ate banks’ efficiency per branch. In this way, they allow the authorities to
identify if the market is over dimensioned or if there is a deficit of banking
services in a geographical space.

This paper intends to make use of these spatial variables in a scenario con-
sistent with the New Empirical Industrial Organization (NEIO) approach,
which analyzes markets with differentiated products. More specifically, this
work focuses in studying competition under a scenario with spatial differen-
tiation. Some examples of this type of literature are Hotelling (1929), Salop
(1979) and Economides (1989). Of these models, the most widely used in
spatial literature is Salop’s approach of the circular city. For instance, Fuen-
telsaz and Salas (1992), apply it to the Spanish case to study the effects of
spatial competition in banks’ efficiency; Chiappori et al. (1995), use it to an-
alyze the effects of regulation over the credit market in Europe; Freixas and
Rochet (1997) employ it to find the optimal number of branches; and Zanna
(2003) uses the model to identify the consequences of introducing financial
innovations.

Traditionally in Colombia, the empirical work that analyzes banks’ behavior
and efficiency has focus on price and quantity variables. Therefore, spatial
variables have received little attention. Some examples include, Levy and
Micco (2003), Mora (2004), Estrada (2005) and Salamanca (2005). This

1For instance, Chiappori et al. (1993) propose a framework in which banks compete
simultaneously with interest rates and branches to analyze the effect of regulation, Barros
(1997) exposes a spatial competition model to explain price differences across banks in the
deposit market and Kim and Vale (2001) set up an oligopolistic model to test for the role
of the branch network as a non-price strategic variable in the Norway banking sector.

2This argument does not imply that banks can not use technology to mitigate this
relation.
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work seeks to emphasize their importance by analyzing the dimension of the
banking system branching network in the context of efficiency and competi-
tion. In particular, the purpose of this document is to prove the hypothesis

that suggests that Colombian banks obey as well to a spatial strategic behavior

when they make their decisions. Meaning from this perspective, that the re-

lations between interest rates, default probabilities, deposits and credits with

number of branches can be better understand from this point of view. Addi-
tionally, the proposed framework allows to calculate the optimal number of
branches for the banking system.

The paper is structured in five additional sections. The first section, presents
a deposit model that follows the framework first proposed by Salop (1969)
of spatial competition around the unit circle. In this section, the model is
generalized to any geographical space, following Fuentelsaz and Salaz (1992).
The next section, modifies the previous model to introduce the loan market
and default risk. Section 4 deals with functional forms, samples and data.
Section 5, exposes the empirical estimation of both models, and finally, sec-
tion 6 concludes.

2 Deposits Market Model

We begin describing a location-based differentiation scheme as the one model
by Fuentelsaz and Salas (1992)3. In this framework, we have a continuum of
depositors distributed uniformly along a unit circle, and n banks (indexed by
i = 1, ..., n) which only have one branch. This assumption does not generate
a theoretical problem, because branches compete for depositors even within
the same bank. The difference is the strength of the competition. A branch
director prefers to loose a client with other branch of the same bank than with
other bank. Additionally, he has global policies that limit the competition
with branches of the same bank. For practical reasons, and given that in the
model a branch represents a bank we will use this terms arbitrarily. In this
scenario, the opening of an additional branch generates a vicious externality
over the market shares of the remaining banks4.

3The authors propose a model inspired in Salop’s work. Salop (1979) was the first one
to introduce the idea of a circle market in which firms compete for deposits.

4See Chiappori et al. (1995) and Tirole (1988).
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Banks collect deposits and invest them into riskless projects that return a
constant rate. Depositors do not have direct access to the riskless investments
which in turn justifies the financial intermediation of banks. The location of
banks is symmetrical, so the distance between two adjacent banks would be
1
n
, as shown in Figure 1.

Figure 1: Location of Agents in the Circle

Oficina i+1

Oficina i

1
n

xi

Furthermore, customers assume a positive transportation cost (t) by unit
distance (x) when they make their deposits in a bank. However, they receive
an interest rate for their deposits (rdi). From this assumptions we can express
depositors utility as:

Ui = max[(rdi − txi), 0]

Given that utility could be zero for those costumers that walk a distance
larger than 1

n
, and given that the customers will only put their money in a

bank if the interest rate offered allow them to make some positive utility, the
relevant market of a bank would be only this extension. Additionally as in
Fuentelaz and Salas (1992) a depositor, may or may not have information of
the banks that surround him with certain probability5. In this way, if the
customer does not have full information he would deposit his money in the
bank that he knows, otherwise he would deposit his money in the bank that
offers him the highest rate and is nearer. The probability that a customer

5This could be due to the places he visits every day or the information he may have in
certain moments.
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has information of the existence of bank i would be denoted by Φi with
Φi ∈ (0, 1). This probability allows us to define two different scenarios of
the model: one in which customers have perfect information and other with
imperfect information.

2.1 Model with Perfect Information

Under a scenario with perfect information, an individual located between two
banks would deposit its money into bank i by analyzing two variables. In
first place, he would consider which of the banks around him offers a higher
rate for his deposits, and in second place, he would choose the nearest bank.
This way, he would choose bank i only if:

rdi − txi ≥ rd − t

[
1

n
− xi

]

Where rdi represents the interest rate that the i bank pays to the deposits
and rd is the interest rate of the competitor bank. Thus, the customer would
be indifferent between i and its adjacent bank if:

rdi − txi = rd − t

[
1

n
− xi

]
(1)

From equation (1) we can derive an expression for the deposit supply of bank
i that lies between its location and the location of the bank i+1. This supply
function would be given by the distance xi:

xi =
rdi − rd + t

n

2t
(2)

Equation (2) does not represent the total deposit supply available for the
bank i, because it excludes the segment that lies down to the other side of
the bank in the symmetric circle. Hence, the total supply of bank i would
be given by equation (2) multiplied by two:

di(rdi, ri) =
1

n
+

rdi − rd

t
(3)

2.2 Model with Imperfect Information

Under this scenario, banks i and i + 1 compete only for customers that
have information of both banks. Thus, if Φi is the probability of knowing
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the existence of bank i, the probability that a depositor knows both banks
around him would be given by ΦiΦ, where Φ denotes the probability of having
information of the bank that is different from i. Therefore, the probability
that a depositor only knows the bank i, would be given by Φi(1−Φ). Keeping
in mind the symmetry of this problem, the deposit supply under imperfect
information could be written as follows:

di(rdi, rd) = 2[Φi(1 − Φ)]
1

n
+ ΦiΦ

[
rdi − rd

t
+

1

n

]
(4)

Then, bank i has to solve the following problem under monopolistic compe-
tition:

max
rdi≥0

π = [s − rdi]di(rdi, rd) − f (5)

where s accounts for the riskless interest rate and f represents the fixed costs
associated with the installment of a new branch 6. The first order condition
of the profit function is given by:

[s − rdi]
ddi

drdi

− di = 0

which could be written as:

[s − rdi]
ΦiΦ

t
−

[
2Φi(1 − Φi)

1

n
+

(
ΦiΦ

(
rdi − rd

t
+

1

n

))]
= 0 (6)

Equation (6) represents the reaction function of bank i. Additionally, in a
symmetrical Nash equilibrium every bank offers the same interest rate (rdi =
rd), and every individual has the same information (Φi = Φ). Therefore, the
optimal financial margin, represented by the difference between the riskless
rate of investments and the deposit interest rate, can be written as follows:

[s − rdi]
∗ =

t

n

(
2 − Φ

Φ

)
(7)

The expression reveals that the financial margin is positively related with
transportation costs, which is intuitive given that banks have to compensate
for the costs that individuals assume when they approach to a bank. The
equation also unveils a negative relation between the financial margin and the

6In this scenario, costs are only associated with deposits and riskless investments.
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knowledge probability
(

δ[s−rdi]
∗

δΦ
≤ 0

)
, which can be explained by competition

forces. If agents have more information then banks are forced to compete
harder by reducing their margins. Finally, we observe that the total number
of branches for the geographical area (n) is inversely related with the banks’
financial margin. This relation is due to the fact that a higher number of
branches is associated with a more competitive behaviour.

By replacing equation (7) into the profit function, and making the function
equal to zero, for a competitive solution, the optimal number of branches for
the banking system is:

n∗ = (2 − Φ)

√
t

f
(8)

Equation (8) shows that the total number of branches of the system decreases
with fixed costs (f) and with the knowledge probability (Φ), while it increases
with costumers’ transportation costs (t). The intuition of the inverse relation
between the fixed costs and the number of branches is obvious. When the
cost per branch increases, the number of branches decreases, given the banks’
budget constraint. However, the relation between the number of branches
and the knowledge probability is not straight forward.
If individuals have more information (which would be represented in a higher
Φ), then the total number of branches may decline because customers can
take greater advantage from the available branches. Moreover, when trans-
portation costs are higher,new branches are opened: some customers may
choose not to deposit their money if the transportation costs exceed the util-
ity that the interest rate generates to them. Under this circumstances, a new
bank may acknowledge the situation and decide to enter the market, keeping
these customers.

2.3 De-normalizing the Model

Until now we have assumed that banks and customers are located in a unit
circle. In this subsection we generalize the market dimension to a geographi-
cal space of size Km, such that Km > 0, which represents a more consistent
scenario and allows us to rewrite equation (5) that represents the profit func-
tion as:
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πi(n) = [s − rd]

(
Di

Km

)
− F

where from equation (7) we can express:

[s − rdi] =
t

n

(
2 − Φ

Φ

)

and F represents banks’ costs per opened branch. For simplicity a param-
eter τ is defined, the parameter comprises the transportation costs and the
probability of knowledge Φ, such that:

τ = t

(
2 − Φ

Φ

)

Following Fuentelaz and Salas (1992), it is assumed that the costs per branch
have a positive relation with its relative size. Intuitively, it can be justified
by the higher number of employees and other resources a branch with more
deposits should use. Thus, the cost function per branch can be written as:

F (Di) = f

(
Di

Km

)β

Where β accounts for scale economies. If β = 0, it would indicate that banks
have constant returns in costs; if β < 1 it would represent increasing returns
to scale; and, if β > 1, it would point decreasing returns to scale.
By using τ and F (Di) the profit function could be reexpressed as:

π(n) = τ

(
1

n

) (
Di

Km

)
− f

(
Di

Km

)β

(9)

By making the profits of the representative bank equal to zero for the com-
petitive solution, the optimal number of branches for the banking system
is:

n∗ =

(
τ

f

) (
Di

KM

)1−β

(10)

The equation confirms the relations that were found under the normalized
model. First, the total number of branches of the banking system increases
with the total supply of deposits per unit area in the market. Second, it
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decreases with the costs per branch, and finally, it grows with the total costs
assumed by the customers when they move towards a bank. The previous
subsection explained these relations.

Replacing (10) in the first order condition for the financial margin, we obtain
the optimal financial margin for the generalized model:

[s − rdi]
∗ = f

(
Km

Di

)1−β

(11)

This equation represents the optimal financial margin of bank i. It shows that
the relation between the financial margin and the stock of deposits per unity
of geographical area for the bank i depends of the signs of the parameters β
and f . Equations (10) and (11) will be used for the empirical analysis in the
next sections.

3 Loan-Deposit Model

In order to propose a more complete model that recognizes the importance
of loans in banks strategic behavior, we follow Chiappori et al. (1995). In
this paper, the credit market is added to Salop’s circle city where most of the
assumptions made in the deposit model introduced earlier are maintained.
Again, n banks are located around a unit circle uniformly and each customer
assumes a transportation cost per unit distance when he is moving towards
a bank to deposit money or to take a loan. However, the transportation cost
is not necessarily the same for each activity; the transportation cost to make
a deposit is denoted by t and the one incurred to take a loan would be tl.
When a customer receives a loan he will pay the bank a interest rate h, and
similarly, he will receive an interest rate of r for each deposit.

Taking into account the balance sheet restriction that banks face, the total
volume of loans that each bank may offer, denoted by V , is assumed to be
less than the total amount of deposits each bank holds.

This paper modifies Chiappori’s model by introducing default risk in the
loan market. We assume that for each loan, the representative bank assumes
a default probability of non-fulfilment. Therefore, the bank may receive
the money it lends with a probability of p and, on the other hand, with a
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probability of 1−p it would just receive the collateral (η) of the credit. In this
context, the collateral is the minimum payment that the bank will receive.
We assume as well, that banks are constantly monitoring each of the credits
to prevent moral hazard in agents7. This last assumption implies that banks
create incentives for individuals and firms in such a way that they have good
will to pay back credits. Naturally, this monitoring represents an additional
cost for banks which is transferred directly to the customers when they pay
the credit. This is a crucial element of the model because it allows us to
leave banks risk management aside.

The characterization of the deposit supply follows the same analysis of the
model that only includes the deposit market mentioned in the previous sec-
tion. Hence, the deposit supply of bank i can be written as:

Di(ri, rdi) = 2x =
1

n
+

ri − rdi

t
(12)

where x stands for the distance between the individual and the bank and rdi

represents the interest rate offered by i’s competitor.

To obtain the credit demand, the behavior of the indifferent customer must
be characterized. This customer faces a condition that satisfies the following
equation:

tlY + phiL− (1− p)(L− η) = tl

(
1

n
− Y

)
+ p(hdiL) − (1− p)(L− η) (13)

In this expression Y represents the distance of the customer to the bank; η
stands for the collateral, which has a lower face value than the loan (η < L);
1 − p is the default probability; and hdi represents the loan interest rate of
the neighbor competitor of bank i. The equation implies that the cost of
taking a loan for the indifferent customer is equivalent to the transportation
cost plus the interests payed on the loan. Nevertheless, in the expression the
interest rate is discounted from the net benefit that the customer may gain
when he has a loss and only pays the collateral η.

7Almazan (1999) proposes a theoretical model of competition that takes into account
the level of capitalization of banks and their ability to monitor different types of projects.
Using this two concepts, the author solves the problem of risk management that each bank
faces when it lends money for a specific project. However, this type of analysis was not
incorporated to our model in order to maintain empirical applicability.
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From equation (13) we obtain the total demand for loans,which could be
written as follows:

Li(hi, hdi) = 2V Y = V

(
1

n
+

[
hi − hdi

tl

]
Lp

)
(14)

Letting s be the interest rate of the riskless investments and C the cost
function of the bank, the following profit function can be obtained:

Πi(hi, ri) = s(Di − Li) − ri(Di) + phi(Li) − (1 − p)(Li − η) − C (15)

The expression is only different from the previous profit functions because
it includes default probabilities. As it is shown, if the customer pays the
credit the bank gets the interest on the loan as expected, nonetheless, if the
customer defaults, the bank looses the amount that is not covered by the
collateral of the loan.

By taking the first order conditions of the profit function with respect to the
interest rates of deposits (ri) and of loans (hi) and replacing ri = rdi and
hi = hdi for the Nash solution we obtain the following expressions:

ri = s −
t

n
(16)

hi =
1

p

(
tl
Ln

+ s + (1 − p)

)
(17)

Surprisingly, equation (16) is the same expression that Chiappori et al.(1995)
obtained for the model that did not includes default risk. As expected, the
interest rate on deposits depends positively on the number of competitors
and on the interest rate of the riskless investments and on the number of
competitors. This last is due to the competition practices that banks perform
through deposits interest rates.

As equation (17)shows, the interest rate on loans decreases with the proba-
bility of payment and the number of competitors. The first relation could be
explained by the known trade-off that exists between risk and loan interest
rates: if the probability of default decreases the bank is facing less risk which
in turn allows it to reduce the interest rate. On the other hand, the inverse
relation between number of branches and the interest rates, responds to the
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competitive behavior of banks. Additionally, the equation reveals that the
interest rate on loans increases with the riskless rate and the transportation
costs. The effect of the riskless rate is accounting for the opportunity cost
that the bank incurs when it makes a loan. Finally, if a customer has to
assume higher transportation costs he would demand lower interest rates for
the same credit.

By substituting equations (16) and (17) into the profit function and assuming
the free entry condition (Π = 0), the optimal number of banks in the market
(n∗) for the short run is:

n∗ =

√(
t +

V tl
L

)(
1

C − (1 − p)η

)
(18)

The equation shows that the number of banks in the market increases with
the transportation costs associated with loans or deposits and with the total
number volume of loans available in the market (V ). Yet, the number of
branches is not directly affected by the stock of deposits in the market in the
short run. This last indicates, that the relevant market for taking decisions
concerning the opening of new branches is the loan market. The above
represents an important result that must be taken into account by regulators,
given that when they introduce policies that intend to affect the number of
branches in the territory, they can focus them on the loan market to achieve
more instant results.

The expression also unveils that the number of banks in the market is a
decreasing function of costs, of the collateral of loans and of the default
probability. The first of these relations is obvious, nonetheless, the inverse
effect of the collateral of loans and of the default probability in the number
of branches deserves an explanation. On the one hand, when the collateral
increases, individuals that are risk averse are going to be more cautious
when they take a credit, reducing loan demand and therefore, the number
of branches. On the other hand, when the probability of default is higher,
banks are the ones that would be more cautious lending, reason for which
they will not open new branches even if there is high demand for credits.

Replacing equation (18) into the first order conditions of the profit function,
given by (16) and (17), gives the long run equilibrium conditions for the
interest rates of the market, which can be written as follows:
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r∗i = s −
t√

(t + V tl
L

)( 1
C−(1−p)η

)
(19)

h∗
i =

1

p

(
tl

L
√

(t + V tl
L

)( 1
C−(1−p)η

)
+ s + (1 − p)

)
(20)

The cost function is specified following Fuentelaz y Salas (1992). The authors
assume that costs per branch have a positive relation with its relative size,
which is justified by the increase in the number of employees and resources
each branch must incur when the deposits or credit stock grows. Therefore,
the cost function is given by:

C = f(
Di

km
)γ(

Li

km
)φ (21)

where γ, φ and f stand for parameters of the equation.

By replacing C in equations (19) and (20) we derive the empirical analysis
of the model in the next sections.

4 Functional Forms and Data

4.1 Functional Forms

The empirical estimation of the model is divided in two parts that correspond
to both of the theoretical models exposed in the previous sections.

Deposits Market Model

For the empirical estimation of the model that only includes the deposit
market (exposed in section 2) we estimate the linearized versions of equations
(10) and (11)8. The linearization of equation (10), that shows the optimal

8The equations are given by the following expressions:

n
∗ =

(
τ

f

) (
Di

KM

)1−β

[s − rdi]
∗ = f

(
Km

Di

)1−β
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number of branches for the banking system per square kilometer for bank i
in the t period, would be given by:

ln(nt) = a0 + a1 ln

(
Dit

Km

)
+ εit, (22)

where a0 = ln

(
τ
f

)
, and a1 = (1 − β). In this equation, nt stands for the

optimal number of branches of the banking system per square kilometer; Dit,
accounts for the deposits stock of the bank i in period t, and Km represents
the geographical area in square kilometers.

In the same way, the linear functional form for equation (11), that explains
the financial margin of bank i in period t is:

ln(s − rit) = b0 + b1 ln

(
Km

Dit

)
+ ǫit (23)

where b0 = ln(f), and b1 = (1 − β). Here, (s − rit) represents the optimal
financial margin. As can be seen in (22) and (23), the linearization of the
theoretical model suggest that a1 must be equal to b1 .

Loan-Deposit Model

The theoretical model exposed in section 3, gives two functional forms for
the empirical estimation. These are equations (19) and (20)9 after replacing
C with the functional form proposed in expression (21). Given that in this
model t, γ, Φ and tl are unknown parameters, this two equations can be
expressed as:

r∗i = r∗i

(
s, V, L, D, p, η

)
(24)

9The equations were given by the following expressions:

r
∗

i
= s −

t√
(t + V tl

L
)( 1

C−(1−p)η )

h
∗

i
=

1

p

(
tl

L

√
(t + V tl

L
)( 1

C−(1−p)η )
+ s + (1 − p)

)
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h∗
i = h∗

i

(
s, V, L, D, p, η

)
(25)

We take the linear expressions of these functions in order to develop a more
rigorous econometric method and make full use of all the available data. This
does not imply a loss of generality for our purposes, because we would be
able to validate the model if the symbols of the coefficients correspond with
the theoretical analysis.This is a common practice in related literature. For
instance, Angbazo (1997) applies this method to linearize the reported net
interest margins. However, we will not be able to analyze the magnitude
of the parameters obtained. As Melvyn et al.(1978) mention: The choice

of a functional form should be based on an integrated consideration of the

economic problem.

4.2 Sample and Data Description

In order to fully exploit the available data, different samples were used for the
estimation of each of the models exposed above. In particular, the number
of branches is only available quarterly from January of 1994 to September
of 2005. Since it is a variable required for the empirical estimation of the
model of section 2, we use this sample to estimate that model. However, the
number of branches is not necessary for the model that was introduced in
section 3, for this reason we used another sample with higher periodicity and
larger span for the estimation of the second model. Each of the samples is
described next.

Deposits Market Model - Sample

The data used for the estimation of equations (22) and (23) covers the period
between January 1994 and September 2005. It has quarterly frequency and
it was obtained from the information published by the Colombian Financial
Superintendence 10.

The deposit interest rate (r) was constructed as the ratio between the interest
expenditures and the total amount of deposits taken from the bank’s balance

10The information is available in the Financial Superintendence web page:
http://www.superfinanciera.gov.co/
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sheets and the loss and profit accounts11. Similarly, the loan interest rate
was calculated as the ratio between the interest rents and the total stock
of credits. The financial margin (s − rid) was computed as the difference
between both of these rates. These estimations correspond to the implicit
interest rates, since there is no available information for each bank’s marginal
rate.

Finally, information concerning the square kilometers of the country was
taken from the Colombian Atlas of the Geographical Institution Agustin
Codazzi for 2005.

Four variables were constructed from the sample to offer some preliminary
information of the size and efficiency of Colombian banks during the period
of analysis. As can be seen in Figure 2, the four variables are gross domestic
product per branch, population per branch, deposits per branch and branches
per square kilometer. The values in the graphics correspond to the averages
of all the observations for each period.

As can be seen in the figures, the variables of gross domestic product per
branch and deposits per branch exhibit a similar behavior. In 2002, this
variables reached a peak, however, this increase was not caused by a fall
in the number of branches because the number of branches grew that year.
Thus, we may conclude that 2002 was a year in which efficiency per office
increased, since the increase in the number of branches was not reflected
in a reduction in the stock of deposits per branch. The series reached a
higher peak in 2004, nevertheless, this time the increase was explained by
a reduction in the number of branches as can be observed in the graph of
branches per square kilometer. It is possible that from this date on, banks
were motivated with the positive results increasing the number of branches
in the market and causing a reduction of deposits per branch for 2005.

Additionally, it most be noted that the number of branches per square kilo-
meter presented a positive trend till 1998, from this year on it has been near
to a constant with mild fluctuations.

Loan-Deposits Model - Sample

11This type of estimation for the interest rates has been applied widely in empirical
literature, see Barajas et al.(2000), Reyes (2004), Uchida (2005) or Salamanca (2005).
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Figure 2: Comparative analysis of size and efficiency
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branch are in thousands of millions and branches per square kilometer indicate the number

of branches per 100,000 square kilometers.
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As was mentioned previously, a different sample was used to estimate the
model that includes the loan market, because there was more data available
for the required variables. The sample employed has monthly frequency
and it covers the period between March 1995 and July 2006. The series
were obtained from the information published by the Colombian Financial
Superintendence.

Similarly, loan interest rates were calculated as the ratio between the interest
rents to the total amount of credits, and the deposits rates were computed
as the ratio of interest expenditures to the total amount of deposits. Fur-
thermore, The riskless rate for banks investment (s) was obtained from a
weighted average rate for government bonds constructed by the Bolsa de

Valores de Colombia called IPTES.12.

Given that in Colombia only mortgage and commercial loans have collateral
(η), this last one, was constructed as a ratio between these type of loans
and the total stock of credits for each bank. Likewise, to construct the
default probability for each bank (1 − p) in each of the periods we divide
non-performing loans by total loans.

Finally, to estimate the V , the total volume of loans that a bank may offer,
we calculate the total amount of deposits that a bank does not require to
maintain in reserves or as obligatory investments.

5 Empirical Results

Given the structure of the data, the estimation of both models is based
on the methodology of Biørn (1999). The author, considers the estimation
of regression systems with random individual effects in the intercept from
unbalanced panel data, i.e. data where individual time series have unequal
length13. This method, is described in Appendix 1, with some detail.

As in Judge et al. (1985), in order to obtain unbiased and consistent estima-
tors under Biørn’s methodology, a fundamental assumptions of no correlation
between the explanatory variables and the latent random individual effect (or

12The statistic was constructed since March of 2005 and it is published in the diary
bulletin of the institution.

13Single equation models with unbalanced panel data are studied in Biørn (1981).
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unobserved effect) has to be made. If this assumption does not holds, the
individual effects estimator (dummy variable or within estimator) should be
used.

Given the multi-equational (SUR) nature of the model under unbalanced
panel data structure, Vásquez (2007) proposes an extended version of the
Hausman specification test for the correlation between the independent vari-
ables and the latent effect. As usual, the correspondent test statistic is based
in the comparison between the covariance matrices of the random and fixed
individual effects estimators. In order to compute this test statistic, the fixed
effects estimator for regression systems from unbalanced panel must be esti-
mated reason for which it is proposed as well in Vásquez (2007), including
a brief extension of restricted seemingly unrelated regression estimators and
the correspondent test statistic to the case of unbalanced panel data a brief
description on restricted seemingly unrelated regression estimators and the
correspondent test statistic is found in Judge et al.(1985, 1988). This anal-
ysis was extended by Vásquez(2007) to the case of unbalanced panel data.
This methodology is described in Appendixes 2 and 3.

5.1 Estimation of Model I

For the model of section 1, we estimate jointly equations (22) and (23), by
using the above methodology. As can be seen, these equations constitute, un-
der certain conditions, a system of seemingly unrelated equations (SUR) with
equality linear restrictions. Such restrictions are imposed by the theoretical
model that requires that a1 is equal to b1.

Results

By comparing the value obtained by the Hausman specification test statistic
(81.00636) against its correspondent critical value for the χ2 distribution
with two degrees of freedom (DF) (9.21034) at 1 percent of significance, the
null hypothesis of no correlation was rejected. Therefore, the fixed effects
estimator was used. The estimates are outlined in Table 1. As can be seen,
the explanatory variables are statistically significant. Additionally, the value
obtained for the χ2 statistic test (0.02494), used for checking the validity of
the linear equality restriction, compared with its respective critical value
(6.63490) indicates that the mentioned restriction has empirical support.
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Table 1: Estimation results for the deposit model

Dependent variable Variable Coefficient St. Error T-stat

Equation 1 ln(nt) Mean intercept -7.38

ln( Q
Km

) 0.19 0.014 13.86

Equation 2 ln(s − rid) Mean intercept -1.7

ln(Km
Q

) 0.19 0.014 13.86

The two estimated equations were:

ln(nt) = a0 + a1 ∗ ln

(
Dit

Km

)
+ εit,

where a0 = ln

(
τ

f

)
and a1 = (1 − β), and:

ln(s − rid) = b0 + b1 ∗ ln

(
Km

Dit

)
+ ǫit

where b0 = ln(f) and b1 = (1−β). The sample has 3302 observations that cover the period

between January 2006 and September 2005. It includes 46 banks that were in the market

in some or in all of the years of analysis.

This last result implies that the restriction is statistically valid, at 1 percent
of significance level. Since the coefficients fulfill the linear equality, they have
the same value in the table.

Based on the estimation, the value of the parameter β was computed, fol-
lowing the theoretical framework, as follows:

a1 = (1 − β)

b1 = (1 − β)

By replacing a1 and b1 by 0.19 in the last equations, the obtained value for
the parameter β is 0.81. Recalling the functional form for the cost function,
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this value indicates that banks have increasing returns to scale14. This result
could be interpreted as a sign of growing efficiency in the banking system

throughout the period in study. This result is consistent with Estrada (2005).

Moreover, from the estimation we were able to construct the number of
branches per square kilometer that every bank view as optimal in each period
for the whole banking system. This was done by replacing the values of
the parameters in equation (22) for each observation and then taking an
average of the constructed dependent variables15. The constructed average
for all the observations in the sample was of 2573. Table 2, shows the
difference between the optimal number of branches and the observed number
of branches for each of the years analyzed in the estimation. As can be
seen, the number of branches increased in the first years until 2001, date
from which it started to decrease. Although, the number of branches has
decline since 2001, it is still higher than the optimal number computed in
the estimation. This conclusion needs to be carefully analyzed given that
the estimation only takes into account the effective demand and supply for
credits and deposits. Thus, several areas in the country were banks are not
present are not included.

14The cost function was given by:

C(q) = f

(
Q

L

)β

15For a0 the value of the mean intercept was used. Additionally equation (22) is:

ln(nt) = a0 + a1 ln

(
Dit

Km

)
+ εit,
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Table 2: Difference between the optimal and the observed number of branches

Period Branches Dist.**

1996 09 1783 -790
1997 09 1913 -660
1998 09 2512 -61
1999 09 2838 265
2000 09 2850 277
2001 09 3121 548
2002 09 3029 456
2003 09 2631 200
2004 09 2801 228
2005 09 2723 150

** Distance from the estimated average. The optimal average is of 2573.

5.2 Estimation of Model II

For the model that includes the loan market presented in section 2 the linear
versions of equations (26) and (27) were estimated16. Again, we jointly esti-
mate the equations by using the methodology proposed by Vásquez (2007).
However, this estimation does not include the extension for linear restrictions.

Results

As in the previous model, the fixed effects estimator was employed given that
the value obtained with the Hausman specification test statistic (200.65859)
compared with the critical value for the χ2 distribution with zero degrees
of freedom (DF) (23.20925) at 1 percent of significance, allows to reject the
null hypothesis of no correlation between the explanatory variables and the
latent effect.

16The equations were given by the linear versions of the following expressions:

r
∗

i
= r

∗

i

(
s, V, L, D, p, η

)
(26)

h
∗

i
= h

∗

i

(
s, V, L, D, p, η

)
(27)
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Table 3: Estimation results for the loan-deposit model

Dependent Var. Variable Coefficient St. Error T-Stat

Equation 1 h intercept (mean) 0.2463
s 0.1668 0.0173 9.6081
L -0.0289 0.0059 -4.8748
D 0.0049 0.0045 1.0828
p 0.5788 0.0269 21.491
η -0.1146 0.0162 -7.0403

Equation 2 r intercept (mean) 0.1182
s 0.1800 0.0149 12.079
L -0.0001 0.0051 -0.0219
D 0.0001 0.0038 3.7334
p 0.5415 0.0231 23.421
η -0.0218 0.0139 -1.5596

The two estimated equations were:

t
∗

i
= t

∗

i

(
s, L, D, p, η

)

r
∗

i
= r

∗

i

(
s, L, D, p, η

)

The sample has 3302 observations that cover the period between January of 2006 and

September of 2005. It includes 46 banks that were in the market in some or in all of the

years in analysis.

The estimation results are outlined in Table 3. The variable V (that repre-
sents the total volume of loans that a bank may offer) which caused severe
multicolinearity problems was not included in the estimation. This is not
a crucial consequence from the theoretical point of view because each bank
determines the total volume of loans it may lend as a percentage of the to-
tal stock of deposits, thus, the relevant variable, the stocks of deposits an
loans, contains all the relevant information for determining the interest rates,
meaning that from this two variables V could be obtained.

In both equations the only variables that are not statistical significant are
the total stock of deposits (D) in equation 1 and the stock of loans (L) in the
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second equation. This results can be interpreted as evidence that deposits
do not affect the loan interest rate directly, and viceversa, that loans do not
affect the deposit interest rate directly. This is an important conclusion for
understanding banks strategic behavior when they fix each of these rates,
this reinforces the idea that market separability in some theoretical models
is not absolutely mistaken.

The results also unveil a positive relation between the riskless rate of in-
vestment (s) and the loan interest rate (h), which can be explained by the
opportunity cost of credits. If safe investments pay a higher rate then a ra-
tional bank would demand a higher remuneration for its money. Likewise,
the estimation shows, as was expected, that the total stock of loans affects
inversely the interest rate. This relation can be explained probably in the
other direction: when a bank offers lower interest rates on credits it increases
its net demand for loans17. With respect to the collateral (η), the estimation
indicates that when there is an increase in the required collateral the interest
rate declines, which is intuitive given the lower risk that a bank faces when
it increases the collateral for credits.

On the other hand, the second equation shows that the deposits interest
rate (r), depends positively on the riskless rate of investment (s) and on the
total stock of deposits (D) while it is negatively affected by the collateral
(η). The first relation can be explained by competitive behavior: if banks
have higher remuneration for their investments they are able to compete with
higher deposit rates. The positive effect of deposits on the interest rate can
be seen more clearly in the other direction as in equation 1 with loans, when
the interest rate on deposits is higher the deposits supply increases. Last,
the inverse relation between the collateral and the deposits interest rate can
be interpreted as a rent effect: when banks have a higher collateral they are
going to recover the invested money with a higher probability, thus, they are
able to compete in the deposit market with higher rates.

Finally, both equations show a positive effect of the payment probability
(p) on the interest rates. This outcome is easily explained for the deposits
rate given that when the probability of payment is higher the banks have
safer investments and they are able to compete with higher rates in the

17It is important to clarify that econometric estimations should never be viewed as
causality relations but as pure relations between variables.
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deposit market. However, the positive relation between this probability and
the interest rate on loans is not that clear. At first, the economic intuition
suggest an inverse relation of these variables given the reduction on risk, but
a second explanation may be suggested, if a bank is aware of the rationality of
its clients it knows that a reduction on loan rates leads to higher probability
of payment and viceversa. That is, if a client has high rates on credits and
he faces any difficulty he may default the credit with a higher certainty than
the one he would have if he faces lower rates.

In conclusion, the data validates both of the theoretical models exposed in
sections 2 and 3. Therefore, the hypothesis that suggested that Colombian
banks develop a strategic spatial behavior from which relations of banking
variables can be better understood could be proven.
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6 Conclusions

This paper intends to determine if Colombian banks present a strategic spa-
tial behavior. Furthermore, this work seeks to analyze if the spatial perspec-
tive allows to improve our understanding of banking variable relations.

In order to achieve this objective this paper proposes two versions of Salop´s
model of spatial competition. The first one, follows closely the methodology
of Fuentelsaz and Salas (1992) in which banks compete for customers in a
geographical space. The second version, incorporates the loan market into
the spatial framework by following the methodology developed in Chiappori
et al. (1995). However, this model was modified to introduce default risk
probabilities into the loan market.

The estimation of both models was achieved by using regression systems for
seemingly unrelated equations for unbalanced panel data. The results, lead
to two important conclusions. First, banks present growing efficiency in the
banking system throughout the period in study, and second, the financial
system presents evidence of over dimension with respect to the number of
branches since 1999. Additionally, the empirical estimations clarified the
following relations:

• There is a positive relation between the riskless rate of investment and
he loan interest rate, which can be explained by the opportunity cost
of credits.

• There is an inverse relation between the collateral and the interest rate
on loans, which is due to the lower risk that a bank faces when it
increases the collateral for credits.

• An increase in the required collateral has an inverse relation on deposits
interest rate which can be interpreted as a rent effect: when banks have
higher collateral they recover the invested money with higher probabil-
ity, thus, they are able to compete in the deposit market with higher
rates.

• There is a positive effect of the payment probability on the interest
rates. In the case of deposits rates it can be explained given that when
the probability of payment is higher, the banks have safer investments
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and they are able to compete with higher rates in the deposit market.
In the case of the loans rate, it is explained by banks awareness of
clients rationality.

• Empirical support was found to the idea of market separability between
the credit and deposit markets.
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A Appendix 1: Estimating Regression Sys-

tems from Unbalanced Unbalanced Panel

Data (Random Effects)

The objective of this appendix is to briefly describe the key steps of the
estimation with random individual effects proposed by Biørn (1999).

As the author points out, let a system of G equations (indexed by g = 1, ..., G)
with observations from unbalanced panel data with N individuals (indexed
by i = 1, ..., N). Each individual is observed in at least one and at most p
periods. Let Np denote the number of individuals observed p periods (not
necessary the same and not necessarily consecutive, p = 1, ..., P ), and let N
be the total number of observations, i.e., N =

∑P

p=1 Np and n =
∑P

p=1 Npp.

Ordering the individuals in P groups such that N1 are observed once, and N2

twice and so on, Mp denotes the cumulated number of individuals observed
up to p times:

Mp = N1 + N2 + ... + Np, p = 1, 2, ..., P (28)

In this case M1 = N1 and Mp = N . Consider as well that Ip stands for the
index set of the individuals observed p times, such that:

I1 = [1, ..., M1]

I2 = [M1 + 1, ..., M2]

... (29)

Ip = [Mp−1 + 1, ..., Mp]

Where, I1 could be considered as a cross section and I2, I3,..., IP as bal-
anced sub-panels with 2, 3, ..., P observations for each individual respectively.
Hence, the g′th equation for the i individual in the t period, given Hg regres-
sors is be given by:

ygit = xgitβg + αgi + ugit (30)

g = 1, ..., G; iǫIp; t = 1, ..., p; p = 1, ..., P
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where ygit represents the dependent variable; xgit is the (1 × Hg) vector
that contains the independent variables; βg stands the coefficient vector of
dimensions (Hg × 1) of the g′th equation including the intercept term; αgi

represents the latent effect specific to each individual i in the g′th equation;
and µgit is the disturbance of i in the g′th equation for the t period. The G
equations system for each individual in period t can be written as:




y1it

.

.

.
yGit




=




x1it 0 . . 0
0 x2it 0 . .
. . . . .
. . . . .
0 . . . xGit







β1

.

.

.
βG




+




α1i

.

.

.
αGi




+




u1it

.

.

.
uGit




(31)

or in compact form:

yit = Xitβ + ǫit, ǫit = αi + uit =




ǫ1it

.

.

.
ǫGit




(32)

In the above expression, the dimensions of xit and of β are (G × H) and
(H × 1), respectively. It is assumed that:

E(αi) = 0G,1

E(µit) = 0G,1

E(αiα
′

j) = δijΣα (33)

E(µitµ
′

js) = δijδtsΣµ

where the δ′s are kronecker deltas and:

Σα =




σα
11 ... σα

1G
... ...

...
σα

G1 ... σα
GG




Σµ =




σµ
11 ... σµ

1G
... ...

...
σµ

G1 ... σµ
GG
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From the assumptions made the composite disturbance vectors defined in
(32) satisfy:

E(ǫit) = 0G,1 E(ǫitǫjs) = δij(Σα + δtsΣu)

In this way the individual mean for ǫ’s could be defined by:

ǫi· =





ǫi1 for i ∈ I1,

(1/2)
∑2

t=1 ǫit for i ∈ I2

...

(1/p)
∑p

t=1 ǫit for i ∈ Ip

(34)

the global mean is:

ǫ =
1

n

P∑

p=1

∑

i∈Ip

p∑

t=1

ǫit =
1

n

P∑

p=1

∑

i∈Ip

pǫi· (35)

By defining the within individual (Wǫǫ), and between individual variation(Bǫǫ)
as:

Wǫǫ =
P∑

p=1

∑

i∈Ip

p∑

t=1

(ǫit − ǫi.)(ǫit − ǫi.)
′

Bǫǫ =

P∑

p=1

∑

i∈Ip

p(ǫi. − ǫ)(ǫi. − ǫ)′

the author shows that the unbiased estimators for Σ̂u and Σ̂α are given by:

Σ̂u =
Wǫǫ

n − N
(36)

Σ̂α =
Bǫǫ −

n−1
n−N

Wǫǫ

n −
∑P

p=1
Npp2

n

(37)

To get the G.L.S estimates by groups, which is the fundamental base of
the G.L.S estimation for the set of total information, the next matrices are
defined:
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yi(p) =



yi1
...

yip


 Xi(p) =



Xi1
...

Xip


 ǫi(p) =



ǫi1
...

ǫip


 (38)

For i ∈ Ip, p = 1, 2, . . . , P . Where yip, Xi(p) and ǫi(p) are the stacked (Gp ×1)
vector, (Gp ×H) matrix and (Gp × 1) vector of y′s, X ′s and ǫ′s, respectively
of the p observations of the i individual i ∈ Ip. In compact matrix notation
for the set of observations, the model for each individual could be written as:

Yi(p) = Xi(p)β + (ep ⊗ αi) = Xi(p)β + ǫi(p) (39)

Where ep is a vector (p × 1) with ones. For the last equation it is supposed
that:

E[ǫi(p)] = 0, E[ǫi(p)ǫ
′
i(p)] = Ip ⊗ Σu + Ep ⊗ Σα = Ωǫ(p) (40)

Where Ip is the p dimensional identity matrix and Ep = epe
′

p is a matrix of
ones of dimensions (p x p). Accordingly, the generalized least squares (GLS)
problem for estimating the coefficient vector βGLS is obtained by minimizing
the quadratic form, given by:

Q =

P∑

p=1

∑

iǫIp

ǫ
′

ipΩ
−1
ǫ(p)ǫip (41)

where:
ǫip = yip − xipβ

Ω−1
ǫ(p) = Bp ⊗ Σ−1

u + Ap ⊗ (Σu + pΣα)−1

with Bp = Ip − (1
p
)Ep and Ap = (1

p
)Ep. Thus, the generalized least square

estimator βGLS is:

βGLS =

( P∑

p=1

∑

iǫIp

X
′

i(p)Ω
−1
ǫ(p)Xi(p)

)−1( P∑

p=1

∑

iǫIp

X
′

i(p)Ω
−1
ǫ(p)Yi(p)

)
(42)

The covariance matrix is written as:

V (βGLS) =

( P∑

p=1

∑

iǫIp

X
′

i(p)Ω
−1
ǫ(p)Xi(p)

)−1

(43)
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Finally, the algorithm suggested to obtain the corresponding GLS estimator
(βGLS) for all the observations could be described as:

1. Obtain consistent estimators for the first residuals. ǫ̂it = yit −Xitβ̂OLS,
with β̂OLS taken from a regression with all the observations yit y Xit.

2. Substitute ǫit by ǫ̂it and get the estimators. Ŵǫ̂ǫ̂ y β̂ǫ̂ǫ̂.

3. Replace Wǫǫ and βǫǫ by Ŵǫ̂ǫ̂ and β̂ǫ̂ǫ̂ and get the estimators Σ̂−1
u , Σ̂−1

α

and Σ̂−1
(p) of the matrices Σ−1

u , Σ−1
α and Σ−1

(p).

4. Substitute Σ−1
u , Σ−1

α and Σ−1
(p) by Σ̂−1

u , Σ̂−1
α and Σ̂−1

(p) and obtain β̂GLS

and V (β̂GLS).

In order to obtain β̂GLS (random effects estimator) under linear equality

restrictions 18(β̂∗
GLS) , the extension about testing equality linear restrictions

on the coefficient vector for the SUR case described in Judge et al. (1985) is
followed. A set of linear coefficients is defined in the following expression:

Rβ = r (44)

where R and r are known matrices of dimensions (j × k) and (j× 1), respec-
tively, j denotes the number of restrictions and k the number of explanatory
variables (which includes the intercept term). Under the assumption that
the vector ǫ is normally distributed and the null hypothesis Rβ = r is true
it can be shown that:

g = (Rβ̂GLS − r)′(RĈR′)−1(Rβ̂GLS − r) ∽ χ2
(j) (45)

where Ĉ represents the covariance matrix of the estimator of random effects
described in (43). Therefore, the correspondent test statistic is given by g.
In this way, the linear restricted estimator would be given by:

β̂∗
GLS = β̂GLS + CR′(RĈR′)−1(r − Rβ̂GLS) (46)

18It is important to note two important issues: i) This kind of test will only have a
large sample justification given that the relevant test statistic depends on an estimator of
the variance-covariance residual matrix. ii) In the context of multiple equations it is now
possible to test restrictions that relate the coefficients in one equation with the coefficients
in other equations.
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B Appendix 2: Estimating Regression Sys-

tems from Unbalanced Panel Data (Fixed

Effects)

This appendix is a summary of the methodology proposed by Vásquez (2007)
concerning with fixed effects estimation in regression systems from unbal-
anced panel data. Additionally, this appendix considers his extension of the
Hausman specification test for this kind of models. Given that this work is
in the same fashion of Biørn’s methodology, described in Appendix 1, this
appendix uses, as much as possible, his notation, organization of the data
and model specification.

As in appendix 1, consider the same G equations system and the same in-
dexes for periods and individuals. Equations (28), (29) remain the same,
nevertheless the specification of the model under the equation (30) has some
modifications, so it could be rewritten in the following way:

ygit = β1g+xs
gitβ

s
g+αgi+ugit, g = 1, ..., G; iǫIp; t = 1, ..., p; (47)

t = 1, ..., p; p = 1, ..., P

where ygit stands for the dependent variable, xs
git is a (1×Hg) regressor vector

(note that the supra-index s allow to differentiate this vector from the vector
that contains the 1 associated with the intercept), βs

g is the (Hg × 1) vector
of unknown coefficients which does not includes the intercept term and is
common to all individuals, ugit is the genuine stochastic disturbance term of
individual i in the g′th equation in the observation t, finally, β1g = β1g + αgi

is the intercept for the gth equation for the individual i in moment t. Thus,
β1g represents the average intercept for the gth equation and αgi represents
the difference of this average for the ith individual in the gth equation. In
this model it is assumed that αgi is fixed (not stochastic).

As in Appendix 1, the stacked system for expressing equation (29) could be
reexpressed as follows:
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y1it

...
yGit


 =




β11
...

β1G


 +




α1i

...
αGi


 +




Xs
1it ... 0
...

...
...

0 ... Xs
Git







βs
1
...

βs
G


 +




u1it

...
uGit


 (48)

or in compact notation:

yit = β1 + αi + Xs
itβ

s + uit (49)

In the above expression, the dimensions of Xits and of β are (G × H) and
(H × 1), respectively. It is assumed that:

E(uit) = 0G,1 (50)

E(uitu
′

is) = δijδtsΣu

where Xit and uit are not correlated and the δ′s are kronecker deltas and:

Σu =




σu
11 ... σu

1G
...

...
...

σu
G1 ... σu

GG


 (51)

By substituting ǫ by u in equations (34) and (35) the individual specific
mean (ui.) and the global of the error term and (u) are respectively defined.
The corresponding (G×G) matrix of within individual covariation could be
expressed as:

Wuu =
P∑

p=1

∑

i∈Ip

p∑

t=1

(uit − ui.)(uit − ui.)
′ (52)

Following Biørn (1999)it is possible to show that:

E(Wuu) = (n − N)Σu

such that:

Σ̂u =
Wuu

n − N
(53)

Specifying the (Gp × 1) the vectors yi(p), ui(p) and the (Gp ×H) matrix Xi(p)

in the same way that in equation (38), the corresponding model for the p
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observations of the individual i ∈ Ip could be expressed in compact form as
follows:

yi(p) = {[ep ⊗ (β1 + αi)] + Xs
i(p)β

s + ui(p)}

Where ep is the (p×1) vector of ones, β1 is a (G×1) vector which represents
the mean intercept common to all individuals that differs for each equation,
βs is an stack of vectors with dimensions (

∑H

g=1 Hg × 1) which contains
the unknown coefficients associated to the explanatory variables in all the
equations of the system except the intercept.Xs

i(p) is a (Gp×
∑H

g=1 Hg) matrix
which the observations of the explanatory variables for all the equations of
the system except for the vector of ones associated to the intercept of each
equation. ui(p) is a (Gp×1) vector of the stochastic disturbance term. Finally,

it is possible to define β1i = (β1 +αi) the (G× 1) vector of intercepts for the
ith individual belonging to the pth group.

From equation (50) it follows that:

E(ui(p)u
′

i(p)) = Ip ⊗ Σu = Ωu(p)

where Ip is an identity matrix of order p and Ωu(p) is the (Gp×Gp) covariance
matrix of the disturbances.

The fixed effects estimator (βs
FE) for all the equations using all observation

when the Σu matrix is known, could be obtained by minimizing the quadratic
form:

Q =

P∑

p=1

∑

i∈Ip

u
′

i(p)V
−1
u(p)ui(p), ui(p) = yi(p) − [ep ⊗ (β1 + αi) − Xs

i(p)]

where:

V −1
u(p) = DpsΩ

−1
u(p), Ω−1

u(p) = Ip⊗Σ−1
u , Dps = Dp⊗Ig, Dp = Ip−(

1

p
)epe

′

p

where Ip is the p dimensional identity matrix and epe
′

p is a (p × p) matrix of
ones. Therefore, the generalized least square estimator βs

FE is:
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β̂s
FE =

( P∑

p=1

∑

i∈Ip

Xs′

i(p)V
−1
u(p)X

s
i(p)

)−1( P∑

p=1

∑

iǫIp

Xs′

i(p)V
−1
u(p)y

′

i(p)

)
(54)

Finally, the covariance matrix is written as:

V (β̂s
(FE)) =

( P∑

p=1

∑

iǫIp

Xs′

i(p)V
−1
u(p)X

s
i(p)

)−1

(55)

In order to estimate βs
FE and its corresponding covariance matrix V (βs

FE),
the following algorithm is recommended:

1. Run OLS separately for all of the G equations using the observations
in yit and Xs

it. By stacking the estimators, obtain the joint estimator

β̂s
OLS. Compute the corresponding consistent residual vectors ûit =

yit − Xitβ̂
s
OLS for all i and t.

2. Estimate the within matrix of residuals by inserting uit = ûit in (52).The
estimator is denoted by Wûû.

3. Estimate Σu by replacing Wûû in (53) for p = 1, ..., P . The estimator

is denoted by Σ̂u.

4. Obtain the feasible GLS estimator of βs by replacing Σ̂u into (54).

In order to obtain β̂s
FE(fixed effects estimator) under linear equality restric-

tions (β̂∗
FE), the extension about testing equality linear restrictions on the

coefficient vector as in the case of the previous appendix is applied. In this
way, equation (44) remains the same and (45) could be rewriten as:

g = (Rβ̂s
FE − r)′(RĈR′)−1(Rβ̂s

FE − r) ∽ χ2
(j) (56)

where Ĉ represents the covariance matrix of the estimator of fixed effects
described in (55). In this way, the linear restricted estimator would be given
by:

β̂∗
FE = β̂s

FE + CR′(RĈR′)−1(r − Rβ̂s
FE) (57)
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C Appendix 3: Hausman Specification Test

In order to choose between the fixed or random effects estimator for the un-
known parameters of the models given by the systems of equations (22)-(23)
and (24)-(25) an extension of the Hausman (1978) specification test, pro-
posed by Vásquez (2007) is used given that the data constitutes a framework
of unbalanced panel data. This test is used to determine if the latent variable
has correlation with the independent variables or with the error term, i.e. to
test the null hypothesis (H0) of no correlation of the explanatory variables
and the individual effects. If H0 is rejected the fixed effects estimator should
be used.

As Baltagi (1995), Wooldridge (2002) note and Judge et al. (1985), remark:
”It would appear that a reasonable prescription is to use the error components
model if αi ∼ i.i.d(0, σ2

α) assumption is a reasonable one and N is sufficiently
large for reliable estimation of σu; otherwise, particularly when αi, and Xs

i

are correlated or N is small they recommend the within estimator”.

Furthermore, Hausman (1978) states that under the random effects specifi-

cation β̂GLS is the asymptotically efficient estimator while the fixed effects
estimator β̂s

FE is unbiased and consistent but not efficient19. If E (αi|X
s
i ) 6= 0

the random effects estimator is biased and inconsistent while the fixed effects
estimator is not affected by this failure of orthogonality. For this reason, it is
crucial to use the mentioned extension of this test in order to choose between
β̂s

FE and β̂GLS. The statistic could be computed as follows:

H = [βs
FE − βs

GLS]′[V (βs
FE) − V (βGLS)]−1[βs

FE − βs
GLS]

The H statistic has an asymptotic χ2
(k) distribution, where k denotes the total

number of explanatory variables without the intercept term. Additionally, in
this expression βs

FE denotes the fixed effects estimator given by equation (54),
βs

GLS represents the random effects estimator expressed in equation (42) and
V (βs

FE) and V (βGLS) stand for the covariance matrices of those estimators,
described in equations (55) and (43), respectively.

19Additionally, a problem for the fixed effects estimator is its sensitivity to errors in
variables. In this case, when the variables are obtained in deviations from their individual
means, the amount of inconsistency increases.
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Following Judge et al. (1985), it is important to note that the most important
problem using the Within estimator is : ”when αi and Xs

i are correlated, the
Within estimator may be less efficient than the alternative consistent estima-
tors that exploit information on the relationship between αi and Xs

i and that
do not ignore sample variation across individuals”. However, literature on
such estimators in the context of linear regression system equations (SUR)
under unbalanced panel data seems to be not available until now.
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