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Abstract 

 

We present an investment process that: (i) decomposes securities into risk 

factors; (ii) allows for the construction of portfolios of assets that would selectively 

expose the manager to desired risk factors; (iii) perform a risk allocation between 

these portfolios, allowing for tracking error restrictions in the optimization process 

and (iv) give the flexibility to manage dinamically the transfer coeffficient (TC).    

 

The contribution of this article is to present an investment process that allows the 

asset manager to limit risk exposure to macro-factors – including expectations on 

correlation dynamics -  whilst allowing for selective exposure to risk factors using 

mimicking portfolios that  emulate the behaviour of given specific. An Artificial 

Intelligence (AI) optimisation technique is used for risk-budget allocation to 

factor-portfolios. 
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The Factor-Portfolios Approach to Asset Management using Genetic Algorithms. 

Both the original (Grinold, 1989) and the generalized (Clarke et al., 2002) 

Fundamental Law of Active Management present a compelling argument to maximize 

both the information and the transfer coefficients (TC) in order to generate alpha returns. 

It is however difficult to construct orthogonal positions when managing an actual fixed 

income portfolio. Thus, the transfer coefficient’s management is of utmost importance in 

order to succesfully obtain excess returns.  

The contribution of this article is to present an investment process that allows the 

asset manager to limit risk exposure to macro-factors – including expectations on 

correlation dynamics -  whilst allowing for selective exposure to risk factors using 

mimicking portfolios (Zangari, 2003) that  emulate the behaviour of given specific 

(factor-portfolios). An Artificial Intelligence (AI) optimisation technique is used for risk-

budget allocation to factor-portfolios. This investment process gives the asset manager 

the ability to actively manage the transfer coefficient in order to take advantage, say, of 

correlation dynamics between factor-portfolios because the tracking error allocated to 

factor portfolios can readily be modified without the need of a new optimization  has 

underlying assets and their realtive weights are known in advance.      

 
Active management using a multifactor model 

 

To preclude arbitrage (Ross, 1976), financial asset prices must embed the same 

price per unit of risk for every risk factor they are exposed to. Thus, assuming a 3 factor 

model, returns per unit of risk obtained through the exposure to these factors (given by 
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λk, the return per unit of risk for factor k) are constant through all the assets and the 

product ikk bλ  are “factor risk premiums” for each of the k factors. Thus, the return for 

each asset is a function of the price per unit of risk, λk, of the surprises from each factor 

and the exposure of the asset i  to each of them:   

 

                                                                             (1) 
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Returns  and risks pr pσ  for an asset or a portfolio can be obtained from the 

estimation of the sensitivity to the factors and their price of risk. 

Risk-factor decomposition is useful for portfolio management, risk management 

and control and also for performance attribution. In portfolio management, an approach 

generally used consists in deciding the specific exposure to the set of factors and then 

performing a portfolio optimization in order to construct a combination of assets that will, 

in aggregate, generate the most approximate exposures. That is, given a desired 

vector B of factor exposures for a portfolio* P , weights should be allocated between 

assets such that:  
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Matrix includes the asset exposures to the  factors for the n  assets E k
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In order to determine the proper exposures, the manager normally would forecast 

spread levels and spot rates (against the forward curve) and then, through an initial 

optimization process, the factor exposure that maximizes return (including roll down, 

carry and coupon payments) and minimizes risk would be computed. After including an 

adequate universe of bonds the second optimization presented above is executed in order 

to determine the proper bond mix that would result in the desired factor exposures and 

the resulting tracking error is computed. 

 

When a risk factor has performed as expected the manager must reassess the 

returns expected for each factor, determine the new desired exposures and re-optimize the 

portfolio. It must be noted that this approach can include other risk factors, such as credit 

or prepayment risks. 
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The Factor-Portfolios Approach. 

 

 Direct exposure to the factors included in the model may be difficult to construct, 

specially for portfolios where restrictive guidelines result in a low transfer coefficient or 

for mathematically defined factors – say, a curvature factor from a principal components 

analysis or a term spread slope factor of the form ⎟
⎠
⎞⎜

⎝
⎛ −=

−
ekF

t
τ
 

22 1*  where variable t  is 

the term and k  and 2 τ  are parameters. Moreover, the resolution level at which the factors 

of the model are defined may be inconsistent with actual position implementation. For 

instance, a Term Spread that accounts for changes in the slope of the swap curve modeled 

with an exponential function similar to the one shown above is difficult to construct with 

financial assets without gaining unwanted exposure to other risk factors.   

 An alternative approach is to construct active portfolios exposed to specific 

factors using the first optimization process presented above and allocate a desired 

tracking error exposure optimally across these factor-mimicking (Zangari, 2003) or 

factor-portfolios - using a risk budgeting approach - by maximizing the information ratio 

and limiting the tracking error by subsets of factor-portfolios; i.e. macro-factors. The 

latter could include all duration or slope positions across markets, a basket of currencies 

or exposure to various corporate risk positions (Corporate spread duration, credit quality 

barbells). Historical returns (from factor returns) and covariance matrices can be 

computed from the constructed risk exposures for factor-portfolios and, independently, 

for macro-factors.  
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 Maximum tracking error exposures to macro-factors can be determined from 

views on their information ratios and expected correlations using, for example, 

optimization techniques and Bhansali and Wise (2005) method for forecasting portfolio 

risk in normal and stressed markets in order to limit the impact of changes in the 

prevailing environment that may affect macro-factors correlation; i.e. changes in the 

correlation between level and slope during a monetary tightening or between corporate 

spreads and treasuries1 or an increased likelihood of a change in risk aversion that may 

affect all correlations and risk levels simultaneously for an increase in the probability of a 

recession. Macro-factors’ risk budgeting can be performed for, say, a 6 months horizon 

and it allows to “put economics (back) into quantitative models” (Bhansali, 2005) as the 

impact of a changing environment can be traduced into tracking error upper limits for an 

active management optimization of the factor-portfolios. Amman and Zimermann (2001) 

found that the size of deviations from the benchmark relates to the statistical tracking 

error and that tracking error restrictions should both restrict the tactical ranges of the 

individual asset classes and the tracking of the individual asset classes. This is of utmost 

importance if the factor-portfolios returns have non-zero correlations and unintended 

coupled exposure to related risk factors (e.g. credit risk slope and credit risk barbell factor 

portfolios) is to be avoided, i.e. if the zero correlation assumption of the law of active 

management cannot be maintained (Grinold, 1989) and correlations are not static.  

 

 The macro-factors’ tracking error allocation can be obtained by assigning an 

expected information ratio  for each strategy][IRE j j , an expected consistent correlation 

                                                 
1 Empirical evidence (Morris, Neal and Rolph, 1998) shows that correlation of returns between treasuries and corporate spreads is 

negative but cointegration is positive.   
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matrix (see Bhansali and Wise, 2005), an overall tracking error to distribute TE and, 

if desired, a maximum tracking error for each macro-factor : 

F M

κ j

)*][max( 1∑= =
Q
j jjM TEIREα          (6) 

Subject to: 

ξ=TEM           (7) 

κ jjTE ≤  with ∈j  universe of macro-factors     (8) 

TE M  is the tracking error to be allocated to the  macro-factors given their expected 

information ratios  and their expected correlation matrix .  
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ξ  is the desired overall tracking error to be allocated.  

 Say, for simplicity, that the portfolio manager has a benchmark that includes 

treasuries and an eligible universe of instruments for active management that comprises 

treasuries, GSE agencies, corporate and Asset Backed securities. All these instruments 

are exposed to yield curve dynamics (parallel shift, slope and curvature changes) but all 

are exposed to differing risks, e.g. credit, liquidity risks and optionality. Instead of taking 

active positions across asset classes, factor-portfolios can be constructed to gain indirect 

exposure to selected risk factors such as parallel shifts, slope and curvature changes of 

the yield curve, changes in spreads for all instruments or credit risk positioning (long AA, 

short A and AAA, spread duration and duration neutral).  Also, using the macro risk 
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budgeting allocation, the overall risk to credit exposures can be limited – e.g. aggregate 

tracking error can be limited for positions in agencies and corporate spread duration and 

barbells or butterflies in the spreads’ space.  

 

 After constructing the factor portfolios and allocating macro-factor risk budgets, 

tracking error must be allocated to each factor portfolio. Macro-factor risk budgets are 

used to limit the aggregated exposure of factors that in normal or special conditions under 

specific environments – increase in risk aversion or fall in prices and collateral feedbacks 

that affect liquidity across various markets simultaneously or change in the monetary 

stance – can generate significant loses in the portfolio. Hence, the optimization problem 

includes restrictions on tracking error space of combinations of factor portfolios. We 

propose the use of genetic algorithms (GA) as optimization tool for three reasons: the 

solution’s landscape can be discontinuous and rugged; tracking error restrictions can 

easily be included in the fitness function (see below) and GA can be used to obtain 

populations of portfolios that are conditioned to specific environments (Reveiz, 2008). 

  

Application of Genetic Algorithms to portfolio optimization    

 

 The vocabulary used by the evolutionary algorithms community is borrowed from 

natural genetics. Individuals in a population, the genotypes or structures, usually 

represent a potential solution to a problem. They are also called strings or 

“chromosomes”, and have L units or “genes”. The positions of each gene, which are 

arranged in a linear succession, are its “loci”. Each gene can take one of θ  values, often 
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referred as “alleles”. The representation therefore has θ L possible strings. In genetic 

algorithms, a binary representation is normally used yielding  possible strings.     2L

 

 A Genetic Algorithm (GA) is an analogue procedure to the evolutionary process 

first applied by Holland (1975) that has been shown to successfully solve linear and non-

linear problems in which the solution space is not “well behaved”, i.e. non-differentiable, 

non-continuous, etc. The strength of the genetic algorithm derives from the application of 

search and selection operators to a subset, or population, of candidate solutions.  

 

 Exploration of all areas of the solution space and exponential exploitation of 

promising areas is done through mutation, reproduction and selection operators applied to 

individuals in the population. Of particular advantage is the synchronized exploration of 

several areas of the solution space and the simultaneous evaluation of fitness of various 

candidate solutions (Houck et al., 1996).  

 

 An initial population is generated, in general at random, such that it is uniformly 

distributed in the search space. After every iteration of the search - a generation - the 

objects in the population are evaluated using a [context-dependent] fitness measure. A 

subset of the population is selected on the strength of its relative fitness, according to its 

worth in some environment, to be the basis of the following population generation. These 

objects are called parents, whist objects created by the application of the reproduction, 

and optionally the mutation, operators to the parents are called “offspring”. The latter 

substitute objects in the populations that were not selected for reproduction. The iteration 
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is repeated until a given halting criteria is fulfilled - either a given fitness has been 

reached or a maximum number of generations has been attained. 

 

 GA belongs to the class of probabilistic algorithms and has the advantage of 

modeling the environment as a separate evaluation function, the fitness function. The 

benefits of evolutionary algorithms are characterized by Angeline (1993): 

  

While the search progresses, the population preserves the best solutions found 

and attempts additional manipulations. As the population becomes filled with 

progressively better members, the search is constrained into areas of the search 

space that are dense with features previously found to be applicable to the task. 

Thus, empirical credit assignment allows evolutionary algorithms to adapt its 

search in the problem space dynamically… Because no explicit knowledge exists 

in the evolutionary algorithm, this knowledge must emerge from the interaction of 

the simple problem solver and the task environment.   

 

 In genetic algorithms, by manipulating the structure of the object independently of 

its interpretation in order to perform the search, structural features of the parents are 

preserved in their offspring2. However, their behavior can differ markedly from their 

parents as no emphasis is placed on reproducing behavior. An adequate definition of the 

structure is essential as in some cases individual positions of the string may have specific 

                                                 
2 For details on schemata theory see Angeline (1993). 

 11



static interpretations. For GA, binary representation seems best suited, bearing in mind 

how the algorithm works and for mathematical consistency (Angeline, 1993).    

 

 As mentioned earlier, an adequate representation in which each individual is made 

up out of a sequence of genes from a certain alphabet that range from binary (Holland’s 

(1975) original representation) to any more natural representations (symbols, matrices, 

etc.) must be constructed in order to apply genetic algorithms to problem solving. For 

instance, suppose we want to compute the portfolio with highest information ratio for 

changes in the tracking error allocation TE  for each factor portfolioj j .  

 

 At the mechanistic level (Spears, 2000; Michalewicz, 1996; Forrest, 1990; Koza, 

1992; Koza et al., 1999) the genetic algorithm consists of: 

 

 Step 1: Solution Representation. In a GA procedure, the parameters 
σ j

jTE  are 

converted to genotypes by means of a mapping procedure. For simplicity in this example 

we will use a binary representation and we will divide the search space into  spaces 

evenly divided in terms of the bounds defined for each variable, namely

N

11 ≤≤−
σ j

jTE . 

For illustrative purposes, suppose we divide the search space into 8 parts for each 

variable for a total of 8 prospective solutions. For instance, as shown in figure 2, a 

candidate solution for a 2 factor portfolios optimization is represented by a concatenated 

2
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6-bit string such that the solution ]33.0;67.0[−=sl  is mapped by the function  

to b  =[010101]:   

),( σ llTEg

l

bTEg lll →),( σ          (9) 

 

 Figure 1 – Solution representation in binary space for 2 factor portfolios  

Binary Decimal
[ 1 0 0 ] -1.00 Sol1,1 Sol1,2 Sol1,3 Sol1,4 Sol1,5 Sol1,6 Sol1,7

[ 0 1 0 ] -0.67 Sol2,1 Sol2,2 Sol2,3 Sol2,4 Sol2,5 Sol2,6 Sol2,7

[ 1 1 0 ] -0.33 Sol3,1 Sol3,2 Sol3,3 Sol3,4 Sol3,5 Sol3,6 Sol3,7

[ 0 0 1 ] 0.00 Sol4,1 Sol4,2 Sol4,3 Sol4,4 Sol4,5 Sol4,6 Sol4,7

[ 1 0 1 ] 0.33 Sol5,1 Sol5,2 Sol5,3 Sol5,4 Sol5,5 Sol5,6 Sol5,7

[ 0 1 1 ] 0.67 Sol6,1 Sol6,2 Sol6,3 Sol6,4 Sol6,5 Sol6,6 Sol6,7

[ 1 1 1 ] 1.00 Sol7,1 Sol7,2 Sol7,3 Sol7,4 Sol7,5 Sol7,6 Sol7,7

Binary [ 1 0 0 ] [ 0 1 0 ] [ 1 1 0 ] [ 0 0 1 ] [ 1 0 1 ] [ 0 1 1 ] [ 1 1 1 ]
Decimal -1.00 -0.67 -0.33 0.00 0.33 0.67 1.00  

 

 Step 2: Randomly select an initial population of bit strings of size sizepop _ , an 

initial set of guesses where  represents the bit length of a given guess, from the entire 

set of possible bit strings of the [parameterized] solution landscape. 

z

 

 Step 3: Define a (problem specific) fitness function  that assigns a numerical 

fitness value to every prospective solution, i.e. each individual of the selected population. 

We can define this fitness function as: 

f

)),...,,,,(max(),...,,,,,( ΗΒΑΩΓ+=ΗΒΑΩΨ hIRbf pl     (10) 

⎪⎩

⎪
⎨
⎧

≤ΓΩΓ∨∨≥ΓΩΓ∨≤ΓΩΓ∨≥ΓΩΓ−=

≤ΓΩΓ∧∧≥ΓΩΓ∧≤ΓΩΓ∧≤ΓΩΓ=

vrdaifh

vrdaifh

..     ...    ..      ..     ..       1()

 ..     ...    ..     ..      ..         1()
 (11) 

 Wh  is the information ratio and ere IR p Ψ=Γ .bl

bl  com

 is the vector of tracking errors 

for the factor portfolios of prospective solution puted with variances ; Ψ rda  , ,  
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and v are trackin error restrictions for the overal o or subsets of factor-portfoliog l portfoli

f te of the

3 

which may or not come from the macro-risk actors exercise; the first s p  

investment decision process described throughout this document. Ω is the correlation 

matrix of the factor-portfolios’ returns. 

 The function is fully defined in the sense that it is capable of evaluating any 

prospective solution it might encounter (Koza et al., 1999).  

n which  properties of the 

es o

uces two 

                                                

 Step 4: Determine a scheme for differentially reproducing the population based on 

the fitness measure. This “survival of the fittest” approach, i  the

b lutions (generation t ) are passed onto the offspring (generation 1+t ), results in an 

improvement of the collective properties of the individuals of the population over time. 

Several schemes can be used for this task. The most widely used are roulette wheel 

(proportionate) selection, tournament selection and ranking selection. In order to 

maximize ()f , we arbitrarily choose a normalized geometric ranking method.  

 Step 5: Define a set of “genetic” operators that modify individuals in order to 

produce new prospective solutions. Crossover takes two individuals and prod

t s

new offspring, providing random exchange of information. Mutation modifies an 

individual’s genotype, preventing genetic drift and providing an additional random search 

while the population converges. Many variants of these two basic operations are used in 

the literature (Spears, 2000; Winston, 1992; Michod, 1999; Koza et al., 1999; Angeline et 

al., 1997; Michalewicz, 1996) and their specific use depends on the representation 

chosen. 

 
3 Which may or not come from the macro-risk factors step of the investment decision process described throughout this 

document.  
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 Step 6: Perform many iterations (generations) measuring fitness of candidate 

solutions, differentially reproducing through selection operators and applying “genetic” 

erato

ed by Merrill Lynch. As a first step we construct 9 factor 

ortfoli

 a factor-portfolio of treasuries’ bonds or futures that has equal key rate 

neutral factor-portfolio that has a 

ositive

read duration using US bullet 

 bonds or futures to obtain a 

tion using US Corporates of the 1-3 

op rs until one of the following occurs: a maximum number of generations is 

reached, no further improvement of the best solution is attained or a target value for the 

fitness function is reached. 

 For illustrative purposes suppose we perform an active management over, say, the 

1-3 US bond index publish

p os: 

 FP_1: Exposure to a parallel shift of the US curve in the 1-3 sector by 

constructing

duration exposures to the 1, 2 and 3 year spot key rates. 

 FP_2: Exposure to an slope shift factor of the spot curve US using the 2 year and 

10 year treasuries bonds and futures to obtain a duration 

p  10 year and negative 2 year key rate durations. 

 FP_3: Exposure to changes in the spread of bullet agencies by constructing a 

factor-portfolio that is duration neutral and long sp

Agencies of the 1-3 sector and treasuries bonds or futures. 

 FP_4: Exposure to changes in Agencies' spreads slope constructing a portfolio 

with US bullet Agencies of the 1-5 sector and treasuries

duration and spread duration neutral factor-portfolio. 

 FP_5: Exposure to changes in the spread of Corporates by constructing a factor 

portfolio that is duration neutral and long spread Dura
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Sector with the same rating distribution of the Merryl Lynch A/AA/AAA corporate index 

and treasuries bonds or futures. 

 FP_6: Exposure to changes in Corporates' spreads slope constructing a factor 

portfolio with US Corporates of the 1-5 sector and treasuries bonds or futures to obtain a 

ad duration for AA rated bonds and 

with US Corporates of the 1-5 sector and treasuries bonds or futures to obtain a 

res to obtain a duration and spread 

d negative correlations that will result in an adequate 

duration and spread duration neutral factor-portfolio. 

 FP_7: Exposure to relative changes between the AA and A/AA ratings (Credit 

Butterfly) by constructing a portfolio that is long spre

short spread duration for AAA and A rated bonds with US Corporates of the 1-5 sector 

and treasuries bonds or futures to obtain a duration and spread duration neutral factor-

portfolio. 

 FP_8: Exposure to relative changes between AAA Financial and Industrial 

Corporate 

duration and spread duration neutral factor-portfolio. 

 FP_9: Exposure to changes in spreads of AAA ABS in the 1-3 Sector with US 

Asset Backed Securities and treasuries bonds or futu

duration neutral factor-portfolio. 

 Figure 2 shows the correlations between these factor-portfolios. Selective indirect 

exposure to factors yields low an

diversification benefit of the active deviations’ portfolio.    
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Figure 2 – Factor-portfolios correlation matrix 

Factor 
Portfolio FP_1 FP_2 FP_3 FP_4 FP_5 FP_6 FP_7 FP_8 FP_9

0.11 0.19 0.10
FP_2 0.38 1.00 0.26 -0.16 0.23 0.11 0.14 -0.02 0.23
FP_3 -0.15 0.26 1.00 -0.12 -0.11 0.15 -0.15 -0.26 0.00
FP_4 -0.03 -0.16 -0.12 1.00 0.02 0.07 0.04 0.15 0.09
FP_5 0.46 0.23 -0.11 0.02 1.00 -0.64 0.05 0.56 0.41
FP_6 -0.10 0.11 0.15 0.07 -0.64 1.00 -0.07 -0.37 -0.26
FP_7 0.11 0.14 -0.15 0.04 0.05 -0.07 1.00 0.09 0.01
FP_8 0.19 -0.02 -0.26 0.15 0.56 -0.37 0.09 1.00 -0.10
FP_9 0.10 0.23 0.00 0.09 0.41 -0.26 0.01 -0.10 1.00

FP_1 1.00 0.38 -0.15 -0.03 0.46 -0.10

 

 
We compute  for each factor-portfolio jα j  using Grinold’s (1989) law of active 
management    

..
 

SIC jjj σα j=          (12) 

Wh  is the information coefficient, 

 
 
 ere IC j σ j S j

h factor-portfolio. Next, we determine the tracking error constraints – see 
is the standard deviation and is 

the score for eac
gure 3. fi

 
Figure 3 – Tracking error constraints for GA optimization 
 
Factor 
Portfolio Restriction A Restriction B Restriction C Restriction D Restriction E

(5) (6)

_2 X X
FP_3 X X X X
FP_4 X X X X
FP_5 X X X X
FP_6 X X X X
FP_7 X X X X
FP_8 X X X X
FP_9 X X X X
Restriction 
Type Higher Than Lower Than Lower Than Lower Than Lower Than
Restriction 
Limit (B.P.) 10 27 15 9 15

(1) (2) (3) (4)
_1 X XFP

FP

 
 
  
 
 
 

 17



 Inputs and tracking error allocations are presented in figure 4. 

igure 4 – Results of factor-portfolios GA optimization 

 
 
F

actor 
ortfolio

Std. Dev.
(B.P.) IC SCORE Alpha (α)

T.E. Max
(B.P.)

T.E. Alloc.
(B.P.)

Position 
Long (+)
/Short(-)

7) (8) (9)
17 +

FP_2 42 0.09 -2 -8 10 1 +
FP_3 14 0.22 2 6 10 10 +
FP_4 28 0.09 -1 -3 0 6 -
FP_5 43 0.13 1 5 10 4 -
FP_6 27 0.09 -2 -5 5 5 -
FP_7 25 0.13 -2 -6 5 5 -
FP_8 65 0.09 2 12 5 5 +
FP_9 53 0.22 -2 -23 5 5 -

F
P

(1) (3) (4) (5) (6) (
FP_1 104 0.22 2 46 20

 
 
 The active portfolio has an expected alpha α p  of 18 b.p., a tracking error 

 ΩpTE of 20 b.p., an information ratio of 0.88 and a diversification benefit of 0.64. 
he latter is defined as:  

 pIR
T
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

Φ

Ω

p

p
p TE

TE
BD 1  =            (13) 

 
 Where  ΩpTE is the tracking error of the portfolio using correlation matrix Ω  

and  ΦpTE is the tracking error of the portfolio using the stressed correlation matrixΦ . 

The diversification benefit is defined in the range [0,1]. 

rtfolio management decision process and technique presented has many 

dvantages. First, assets’ exposures to macro-risk factors can be controlled and managed.  

 pBD
 

Conclusions 

 

 The po

a
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 Second, changes in the environment can be reflected in the macro-factors’ 

medium term correlation matrix or expected information ratios in order to limit overall 

exposure but without affecting directly the risk budget factor-portfolio GA optimization4.       

 Third, factor-portfolios can be constructed with low or negative correlations and 

the number of potential positions or “bets” can be increased, both resulting in a higher 

expected information ratio. 

   Fourth, because the specific assets that constitute the factor portfolio can be 

bought or sold in the appropriate amounts, the transfer coefficient (TC) can be managed 

actively as changes in the size of a tracking error of a (factor-portfolio) position can be 

implemented immediately, and its impact in terms of overall risk and diversification 

benefits is known. This flexibility allows to take advantage from changes in the 

correlations of the factor-portfolios.  

 Finally the asset manager can take profits or loses arising from factor dynamics 

without the need to optimize the portfolio to obtain the new composition that reflect the 

new desired exposures5.  

 

 

 

                                                 
4 For the GA optimization actual Factor-portfolios’ returns and correlations are used.   
5 Transactions can be performed rapidly, limiting the execution risk. 
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