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1 Introduction

Credit Default Swaps (CDS) are one of the most common forms of credit derivatives
aimed at mitigating counterparty risks (Atil et al., 2016). In the case of country-CDS,
this instrument provides insurance against sovereign credit risk and is commonly
used by market participants and policymakers to evaluate country risk premium dy-
namics. Furthermore, country CDS also provide indications of sovereign credit risk
that reflect economic fundamentals and market conditions, and some studies have
pointed out that they appear to incorporate information faster than bond markets
during periods of stress (IMF, 2013).

In the context of tight external financial conditions or when international fi-
nancial markets display risk-off behavior, assessing the degree of dependence of
CDS for emerging markets and variables related to the global financial cycle is par-
ticularly important since sovereign debt defaults frequently happen in waves and
appear to mainly occur during times of extreme economic or market conditions
(Cheuathonghua et al., 2022).

Regarding the use of copulas in CDS markets, recent literature has focused
on examining dependency and interactions with other financial markets. Atil et al.,
2016 use a Copula-Garch model to assess the dependence structure of sovereign
CDS between European countries and the United States. Cheuathonghua et al., 2022
and Sun et al., 2020 study the spillovers from commodity markets to sovereign CDS
spreads in commodity-dependent countries. Feng et al., 2022 and Naifar, 2012 assess
the spillovers and the dependence structure between sovereign CDS, exchange rate
markets, stock market indices, and equity return volatility. Finally, Wang et al.,
2022 analyze the sensitivity of sovereign CDS markets in both G7 and BRICS under
stressed commodity and stock markets.

In this paper, we examine the impact of the global financial cycle, using the
VIX index, on different quantiles of emerging market CDS. Particularly, we use daily
information for eleven emerging market CDS from October 2010 to August 2022.
Following the approach proposed by Reboredo and Ugolini, 2016, we characterize
the bivariate dependence structure between the VIX index and emerging market
CDS through copulas. From these copulas, it is possible to compute the change in
a CDS quantile conditional on a large positive (high quantile) movement in the VIX
index. Then, we evaluate whether the conditional change in a specific country CDS
differs from the unconditional CDS change computed from the marginal distribution.
Specifically, we use the Kolmogorov-Smirnov (KS) test to check if there are statistically
significant differences in the quantile functions. Thus, we can assess if there is
evidence of tail dependence between the VIX index and each of the emerging market
sovereign CDS (i.e., there is a higher co-movement in the tails of the CDS conditional
distributions than the one from the unconditional distribution).
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The contribution of our paper is twofold. First, we show evidence of tail
dependence between the VIX and emerging market CDS. Second, we find that this
result is robust for different periods in our sample in which emerging market CDS
has been affected by a wide range of shocks and external risk episodes. In addition,
there is some partial evidence that the impact of these external variables on emerging
market CDS has increased.

This article consists of six sections including this introduction. The second
section briefly discusses the significance of the global financial cycle and investors’
appetite in country risk premium dynamics. The third section describes the data and
some stylized facts about the performance of CDS in Brazil, Chile, China, Colombia,
Indonesia, Korea, Malaysia, Mexico, Peru, South Africa, and Turkey. Section four
presents the methodology and empirical strategy of the Copula-CoVaR model that
we use in this study. Section five presents the main results, focusing in three different
periods in our sample. The last section summarizes the main findings and discusses
some implications for both investors and policymakers.

2 The significance of the Global Financial Cycle and
emerging market sovereign risk dynamics

International financial markets have become increasingly interconnected, resulting
in the emergence of a “global financial cycle” (Miranda-Agrippino & Rey, 2022). This
cycle generates a common pattern in risky asset prices, including emerging market
CDS, due to global factors such as the global financial cycle and investor appetite
for emerging market risk (Habib & Venditti, 2018). This pattern is driven by the fact
that during periods of global economic growth and stability, investors may be more
willing to invest in emerging markets and other countries with higher risk premiums,
which can lead to a decline in country risk premiums. Conversely, during periods
of global economic uncertainty or crisis, investors may become more risk-averse and
demand higher risk premiums, leading to an increase in country risk premiums
(risk-on/risk-off behavior).

To study this phenomenon, we use the VIX index as a proxy for the global
financial cycle and investor appetite for emerging market CDS risk. This variable
captures external risk events that broadly impact international and emerging financial
markets and reflects the risk-on/risk-off behavior of international investors. Previous
research has shown a high correlation between the VIX index and a global factor of
risky asset prices (Miranda-Agrippino & Rey, 2022) and it is highly correlated with
other variables that has been used to study the global financial cycle (see Appendix
B). The VIX index, also known as the "fear indicator," measures the implied volatility
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of the US stock market and is commonly used as a proxy for global risk aversion.
Increases in this variable reflect risk-off behavior in international financial markets
and the global financial cycle. In addition, the choice of the VIX can be justified on
three grounds. Firstly, implied volatility is strongly correlated across countries, so
even country-specific variables mostly capture global trends. Secondly, the US stock
market plays a central role in global financial markets, owing to the importance of
the US dollar. Thirdly, the VIX is available for a long time span (Habib & Stracca,
2012) and is widely used among market participants. Figure 4 shows the VIX index
and its daily changes.
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Figure 1: Time series plots of the VIX index (levels and daily changes). Note: The left-hand side
axis displays the kernel.

Source: Bloomberg and authors’ calculations

As shown in Figure 2 there is a high and significant correlation between the
daily changes in emerging market CDS and the VIX index. Although there are
idiosyncratic elements that drive sovereign risk premium, the process of financial
globalization and the global financial cycle could be factors that explain the high
degree of co-movement in these risky assets. In fact, the literature has pointed out
that there are risk spillovers that arise from the interaction between international liq-
uidity and global risk perception with country risk, particularly in emerging market
economies (Miranda-Agrippino & Rey, 2022). In addition, Gilchrist et al., 2022 show
that a substantial portion of the co-movement among sovereign spreads is accounted
for by changes in global financial risk.
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Figure 2: Pearson correlation between the daily changes of sovereign CDS and the daily changes in
the VIX index for the whole sample).

Source: Authors’ calculations

In our approach, we aim to show that besides correlation, it is possible to find
tail-dependence between variables related to the global financial cycle and country
risk premium. While linear correlation has been widely used in modern finance
to capture co-movements between financial assets, non-normal features of assets’
daily changes make it biased to draw conclusions from the use of linear correlations
(Atil et al., 2016) and ignore the possibility of tail dependence. Thus, the use of
copulas offers a better alternative to measure co-movements and inter-dependency
between our selected measures for the global financial cycle and CDS daily changes.
In section 4, we will stress this variable to assess the response of emerging market
CDS in the tails of their conditional distributions. Specifically, we focus on the upper
tail dependence for the CoVaR, which is easily associated with distressed episodes
in international financial markets due to the high expected volatility and higher risk
associated with high values of the VIX index.

3 Data and some stylized facts

For this study, we used daily data on 5-year credit default swaps (CDS) for 11 emerg-
ing countries from October 2004 to August 2022. Our group of emerging market
countries includes Brazil, Chile, China, Colombia, Indonesia, Korea, Malaysia, Mex-
ico, Peru, South Africa, and Turkey. Our sample starts on October 10, 2004, and ends
on August 10, 2022. All CDS series and the VIX index were transformed into their
first differences.
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We also divided our data into three sub-samples. The first one ranges from
October 10, 2004, to July 31, 2007; the second one starts on August 1, 2007, and ends on
November 30, 2016. The last sub-sample goes from December 1, 2016, to August 10,
2022. We based the choice of samples on Liu et al., 2022. The first sub-sample captures
the events before three extreme crises, mainly the 2007 U.S. subprime crisis, the 2008
global financial crisis, and the European debt crisis, all of which are contained in
the second sample. The last sample captures events from 2016 to 2022, meaning it
can give us insight into the COVID-19 pandemic and the first months of the Russian
invasion of Ukraine.

We report the descriptive statistics of the dataset used for the whole sample in
Table 1. Descriptive statistics for the three considered sub-samples can be found in
Table 3 in the Appendix. Statistics in Table 1 indicate that the daily changes of CDS
are positively skewed, with the exception of Korea, indicating that the distributions
have longer right-hand tails. This result, along with high kurtosis values, indicates
the presence of fat tails. Accordingly, the Jarque-Bera test strongly rejects normality
for CDS daily changes.

Table 1: Descriptive statistics.

Country Mean Maximum Minimum Std. Dev Skewness Kurtosis J-B ARCH K. Corr.VIX

Brazil -0.032 186.535 -124.909 8.451 2.008 78.531 1198764 754.985 0.325
(0.000) (0.000)

Chile 0.021 63.111 -64.267 3.712 0.657 64.478 806345 462.705 0.224
(0.000) (0.000)

China 0.010 67.467 -58.911 3.515 0.626 70.607 966842 652.526 0.123
(0.000) (0.000)

Colombia -0.025 180.586 -126.521 8.202 1.379 80.910 1270661 689.576 0.307
(0.000) (0.000)

Indonesia -0.055 324.519 -223.813 13.302 3.121 167.846 5469434 433.453 0.104
(0.000) (0.000)

Korea 0.000 133.281 -168.551 5.720 -2.924 263.794 13497897 373.964 0.102
(0.000) (0.000)

Malaysia 0.009 119.397 -101.336 5.223 1.707 125.902 3075418 481.355 0.113
(0.000) (0.000)

Mexico 0.009 197.199 -132.962 7.309 3.816 165.491 5320982 609.891 0.329
(0.000) (0.000)

Peru -0.039 161.392 -126.103 6.720 1.823 117.922 2698530 413.825 0.298
(0.000) (0.000)

SouthAfrica 0.033 146.450 -82.359 7.986 2.251 55.388 598694 1052.763 0.214
(0.000) (0.000)

Turkey 0.076 166.473 -131.913 10.716 1.575 45.010 394695 2300.285 0.201
(0.000) (0.000)

VIX 19.249 82.690 9.140 9.106 2.437 8.560 18815 768.012 1.000
(0.000) (0.000)

Daily data from October 10, 2004 to August 10, 2022. J-B denotes the Jarque-Bera statistic (p-value
in parentheses) and ARCH indicates Engle’s Lagrange Multiplier test (p-value in parentheses) for
heteroskedasticity at lag 20. K. Corr.VIX denotes the Kendall rank correlation coefficient between the
first differences of each country’s CDS’ and the first differences of the VIX index.

Source: Authors’ calculations
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4 Methodology and empirical strategy

This document analyzes the impact of the global financial cycle, specifically the VIX
index, on the CDS quantile of 11 emerging countries. To achieve this, we use the
conditional quantile (CoVaR) obtained through a Copula-CoVaR model. We also
compare this methodology with the unconditional quantile (VaR) of each country’s
CDS to understand the dynamics in the tails of the distribution and the possibility of
tail dependence.

The remaining section is divided into two parts. Section 4.1 explains VaR and
CoVaR measures and provides a brief introduction to copula models. In Section 4.2,
we present a methodology to test for differences between VaR and CoVaR. This is
particularly important in our approach because a CoVaR higher than VaR indicates
that stress episodes of the CDS are more severe when the VIX index is stressed. This
can be interpreted as a signal of tail dependence (Reboredo and Ugolini, 2016).

4.1 VaR and CoVaR

The most common market risk measure used by financial institutions, value at risk
𝑉𝑎𝑅𝛼

𝑦 is defined as the 𝛼-quantile of the return distribution as follows:

𝑃
(
𝑦𝑡 ≤ 𝑉𝑎𝑅𝛼

𝑦

)
= 𝛼 (1)

However, VaR by itself does not allow for the analysis of systemic risk dynamics.
Therefore, we use CoVaR, proposed by Adrian and Brunnermeier, 2011 and modified
by Girardi and Tolga Ergün, 2013. CoVaR is defined as the conditional 𝛼-quantile
of the analyzed series (𝑦𝑡) given a 𝛽-quantile of the stressed series (𝑥𝑡), and can be
expressed as:

𝑃
(
𝑦𝑡 ≤ 𝐶𝑜𝑉𝑎𝑅

𝛼 |𝛽
𝑦,𝑥 | 𝑥𝑡 ≤ 𝑉𝑎𝑅

𝛽
𝑥

)
= 𝛼 (2)

Let us assume that 𝑦𝑡 follows an AR-gjrGARCH process given by

𝑦𝑡 = 𝜑0 +
𝑚∑
𝑗=1

𝜑 𝑗𝑦𝑡−𝑗 + 𝜖𝑡 , (3)

𝜖𝑡 = 𝜎𝑡𝑧𝑡 , 𝑧𝑡
𝑖.𝑖.𝑑∼ �̃�𝑦 , (4)

𝜎2
𝑡 = 𝛼0 +

𝑞∑
𝑗=1

(𝛼 𝑗 + 𝛾𝑗𝐼𝑡−𝑗)𝜖2
𝑡−𝑗 +

𝑝∑
𝑗=1

𝛽 𝑗𝜎
2
𝑡−𝑗 (5)
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with 𝐼𝑡 = 1 if 𝜖𝑡 < 0, and 𝐼𝑡 = 0 otherwise, and �̃�−1
𝑦 (𝛼) denotes the 𝛼-quantile of the

skewed-t distribution proposed by Fernández and Steel, 1998.1

Then, the VaR is calculated as follows:

𝑉𝑎𝑅𝛼
𝑦,𝑡 = �𝑦,𝑡 + 𝜎𝑦,𝑡 �̃�

−1
𝑦 (𝛼) (6)

where �𝑦,𝑡 ≡ 𝐸(𝑦𝑡 |ℱ𝑡−1) and 𝜎2
𝑦,𝑡 ≡ 𝑉𝑎𝑟(𝑦𝑡 |ℱ𝑡−1), both of them are obtained from

equations (3) - (5).

Next, we will show the definition of Copula that is used in the methodology
of Copula-CoVaR.

Copula

The inclusion of Copula in CoVaR estimation has many advantages (Reboredo and
Ugolini, 2016). Mainly, it allows for the separate modeling of the marginals and
dependence structure, and captures the differences between upper and lower tail
dependence. In the next paragraph, we define the copula function.

For a pair of series, 𝑦𝑡 and 𝑥𝑡 , given an information set ℱ𝑡−1, the joint distribu-
tion can be expressed as:

𝐹𝑦𝑥(𝑦, 𝑥 |ℱ𝑡−1;�) = 𝐶
(
𝐹𝑦(𝑦 |ℱ𝑡−1;�1), 𝐹𝑥(𝑥 |ℱ𝑡−1;�2)|ℱ𝑡−1;�𝑐

)
(7)

Where � = (�′
1, �

′
2, �

′
𝑐)′, 𝐶 corresponds to the copula function, and 𝐹𝑦 and 𝐹𝑥 are the

marginal c.d.f. of 𝑦 and 𝑥, respectively.

Equation (7) assumes a static copula, meaning that it’s parameters are constant
through time. On the other hand, for dynamic copulas, the copula parameters are
time-varying. For doing that, we follow the equations given by Patton, 2006 that are
presented below.

For example, for a dynamic Gaussian Copula, its dependence parameter 𝜌𝑡

follows a process of the form:

𝜌𝑡 = Λ
©«𝛾 + 𝛽𝜌𝑡−1 + 𝛼

10

10∑
𝑗=1

Φ−1(𝑢𝑦,𝑡−𝑗)Φ−1(𝑢𝑥,𝑡−𝑗)ª®¬ (8)

1To account for possible asymmetries we use gjrGARCH model proposed by Glosten et al., 2011
and a skewed-t distribution for the standardized residuals.

9



For a dynamic 𝑡 copula 𝜌𝑡 follows a similar process:

𝜌𝑡 = Λ
©«𝛾 + 𝛽𝜌𝑡−1 + 𝛼

10

10∑
𝑗=1

𝑡−1
𝑛 (𝑢𝑦,𝑡−𝑗)𝑡−1

𝑛 (𝑢𝑥,𝑡−𝑗)ª®¬ (9)

Given that the dependence parameter 𝜌𝑡 of the previous equations must be in
the interval (−1, 1), the transformation Λ(𝑥) ≡ (1 − 𝑒−𝑥)(1 + 𝑒−𝑥)−1 is used. Φ(•) is
a univariate standard normal c.d.f., 𝑡𝑛(•) is a univariate 𝑡 c.d.f., 𝑢𝑦,𝑡 ≡ 𝐹𝑦(𝑦𝑡 |ℱ𝑡−1;�1)
and 𝑢𝑥,𝑡 ≡ 𝐹𝑥(𝑥𝑡 |ℱ𝑡−1;�2).

For dynamic Gumbel and rotated Gumbel Copulas with parameter 𝛿𝑡 , the
latter parameter follows the process below:

𝛿𝑡 = Λ
©«𝛾 + 𝛽𝛿𝑡−1 + 𝛼

10

10∑
𝑗=1

|𝑢𝑦,𝑡−𝑗 − 𝑢𝑥,𝑡−𝑗 |ª®¬ (10)

where Λ(𝑥) ≡ 1 + 𝑥2 holds the dependence parameter 𝛿𝑡 in (1,∞) .

CoVaR calculation

To understand how to include copula in the definition of CoVaR, note that 𝑃
(
𝑦𝑡 ≤

𝐶𝑜𝑉𝑎𝑅
𝛼 |𝛽
𝑦,𝑥 | 𝑥𝑡 ≤ 𝑉𝑎𝑅

𝛽
𝑥

)
= 𝛼 can be written as:

𝐹𝑦𝑥(𝐶𝑜𝑉𝑎𝑅
𝛼 |𝛽
𝑦,𝑥 , 𝑉𝑎𝑅

𝛽
𝑥)

𝐹𝑥(𝑉𝑎𝑅
𝛽
𝑥)

= 𝛼 (11)

Therefore, conditional quantiles of 𝑦 depends on the joint distribution function
of 𝑦 and 𝑥, 𝐹𝑦𝑥(•).

Taking into account equation (7) evaluated in (𝐶𝑜𝑉𝑎𝑅
𝛼 |𝛽
𝑦,𝑥 , 𝑉𝑎𝑅

𝛽
𝑥), equation (11)

can be written as:
𝐶
(
𝐹𝑦

(
𝐶𝑜𝑉𝑎𝑅

𝛼 |𝛽
𝑦,𝑥

)
, 𝛽
)
= 𝛼𝛽. (12)

Then, by inverting the copula function in equation (12) for given values of 𝛼 and 𝛽,
we can obtain the value of 𝐹𝑦

(
𝐶𝑜𝑉𝑎𝑅

𝛼 |𝛽
𝑦,𝑥

)
, which is denoted as �̂�𝑦

(
𝐶𝑜𝑉𝑎𝑅

𝛼 |𝛽
𝑦,𝑥

)
.

Finally, by inverting the marginal distribution function of 𝑦𝑡 we get the condi-
tional quantile as:

𝐶𝑜𝑉𝑎𝑅
𝛼 |𝛽
𝑦,𝑥 = 𝐹−1

𝑦

(
�̂�𝑦

(
𝐶𝑜𝑉𝑎𝑅

𝛼 |𝛽
𝑦,𝑥

))
(13)
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Once the VaR and CoVaR2 are estimated, it is important to compare them,
since the difference between the unconditional and conditional quantiles can give us
an insight of possible spillover effects.

4.2 Hypothesis testing: The KS test

After estimating the VaR and CoVaR, we evaluate if there is a significant difference
between the conditional (CoVaR) and unconditional (VaR) quantiles of 𝑦𝑡 . If there is
evidence of tail dependence we would expect CoVaR to be greater than VaR when
the risk events are associated to the upper tail.3

To assess the difference between VaR and CoVaR we use the Kolmogorov-
Smirnov (KS) bootstrapping test proposed by Abadie, 2002.

The hypotheses of the test for the upper tail 4 are:

𝐻0 : 𝐶𝑜𝑉𝑎𝑅
𝛼 |𝛽
𝑦,𝑥 = 𝑉𝑎𝑅𝛼

𝑦 (14)

𝐻1 : 𝐶𝑜𝑉𝑎𝑅
𝛼 |𝛽
𝑦,𝑥 > 𝑉𝑎𝑅𝛼

𝑦 (15)

Then, with given values for 𝛼 and 𝛽, if we do not reject the null hypothesis,
the CoVaR and VaR are not significant different.

5 Results

Estimation results of the VaR and CoVaR of CDS first differences are shown in Figure
3 when the VIX index is stressed.5 These graphs report evidence on the dynamics of
both unconditional (VaR) and conditional (CoVaR) CDS quantiles. As we mentioned
in Section 3, the data is divided in three subsamples to account for various financial

2The CoVaR presented in equation (13) assumes that 𝑦 and 𝑥 are i.i.d.. However, if that is not the
case and we model the first and second moment as in equations (3)-(5); then, 𝐹(𝑦) in equation (13) is
replaced by �̃�(𝑦) given in (4).

3Conversely, VaR is expected to be greater than CoVaR if there is evidence of tail dependence when
the risk events are associated with the lower tail.

4Conversely, the null and alternative hypotheses for the lower tail are 𝐻0 : 𝑉𝑎𝑅𝛼
𝑦 = 𝐶𝑜𝑉𝑎𝑅

𝛼 |𝛽
𝑦,𝑥 and

𝐻1 : 𝑉𝑎𝑅𝛼
𝑦 > 𝐶𝑜𝑉𝑎𝑅

𝛼 |𝛽
𝑦,𝑥 .

5The model estimation results for each of the CDS series used in our study can be found in
Appendix C. Tables 4, 5 and 6 report gjr-GARCH estimates for samples 1, 2 and 3, respectively; and
Table 7 shows the copula estimation results for each CDS with the VIX index.
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events. Particularly, in our results it is possible to distinguish several stress episodes
in the data, affecting both the unconditional and conditional quantile results for the
three subsamples (e.g. the 2009–2012 European Sovereign Debt Crisis, the sharp
decline in oil prices after mid-2014, and the COVID-19 shock). It is important to
highlight that in all of these results we can see a higher conditional quantile than the
unconditional ones. As we mentioned before, a CoVaR higher than the VaR indicates
that stress episodes of the CDS are more severe when external variables are stressed
and can be interpreted as a signal of tail dependence (Reboredo & Ugolini, 2016).
This seems to be relatively similar across sovereign CDS and across samples.

This evidence is also confirmed by the statistics shown in Table 2. In these
tables we can see that the computed VaR and CoVaR averages for our sample periods
are different, with the CoVaR averages being higher than the VaR values. Since
the CoVaR of CDS changes conditional on a tighter global financial cycle is higher
than the unconditional VaR, we argue that the global financial cycle actually play an
important role in the tails of the distribution.

To formally test the claim that the CoVaR values for each sovereign CDS are
different, we use the KS tests (see section 4.2). This test evaluates the differences
between unconditional and conditional CDS quantiles at the 0.05 level (i.e. during
stress episodes).6 We find that for all sovereign CDS and for the three samples
the computed CoVaR values are higher than the VaR with the exception of China
during the first sample period.7 These results point that there is evidence of tail-
risk dependence between variables associated with the global financial cycle and
sovereign CDS. Furthermore, this implies that for the construction of financial risk
scenarios, Copula-CoVaR measures could be a better tool to assess risk than the
traditional ones.

6Figure 5 in Appendix D shows the cumulative distribution functions of the CoVaR and VaR used
in the Kolmogorov-Smirnov test. In all the cases, the CDF of the CoVaR stays below the CDF of
the VaR indicating that the CoVaR is greater than the VaR. We only show results for the last sample
period as they highlight the most recent tail-dependence between proxies of the global financial cycle
and sovereign CDS. However, the results are similar for the remaining two sub-samples. Additional
detailed results for all the sub-samples can be requested to the authors.

7It is important to note that during the first sample period China debt was relatively low to its
historical average, which in turn explain the low levels of country risk premium, and its unrespon-
siveness to external financial conditions during this period. According to IMF data, during 2005-2008
China gross debt position oscillated between 25.6% and 29.2% of GDP, in 2009 it increased to 34.6%
and has been increasing up to 76.9% in 2022. Another country that has a low level of debt in this
period is Chile, but in this case we found a statistically significant difference between its VaR and
CoVaR average.
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Figure 3: Time series plots for the impact of extreme VIX movements on unconditional (VaR) and
conditional (CoVaR) CDS quantiles. Sample 1 goes from October 10. 2004 to July 31 2007, sample 2
from October 10. 2004 to August 1, 2007 (shaded area), and sample 3 from December 1, 2016 to August
10. 2022.
Source: Authors’ calculations 13



Table 2: Statistics and hypothesis testing for the impact of extreme VIX movements on unconditional
and conditional CDS quantiles.

Sample 1 Sample 2 Sample 3

(Oct/10/2004 - Jul/31/2007) (Aug/01/2004 - Nov/30/2016) (Dec/01/2016 - Aug/10/2022)

Country VaR average CoVaR average KS Test VaR average CoVaR average KS Test VaR average CoVaR average KS Test

Brazil 9.652 14.456 0.284 11.015 21.987 0.422 8.192 13.127 0.453
(5.502) (8.138) (0.000) (11.485) (23.282) (0.000) (10.223) (16.206) (0.000)

Chile 0.852 1.178 0.282 5.548 10.941 0.507 3.158 7.778 0.798
(0.821) (0.838) (0.000) (5.109) (10.832) 0.000 (2.962) (6.960) (0.000)

China 0.777 0.736 0.005 4.774 6.028 0.197 2.834 5.448 0.527
(0.645) (0.861) (0.978) (4.470) (5.642) (0.000) (2.341) (4.409) (0.000)

Colombia 11.241 15.639 0.273 9.738 19.589 0.430 6.006 12.956 0.653
(11.724) (16.063) (0.000) (11.348) (23.186) (0.000) (7.135) (14.536) (0.000)

Indonesia 2.244 2.260 0.128 13.410 20.316 0.155 5.211 9.005 0.430
(4.937) (4.971) (0.000) (28.730) (45.902) (0.000) (5.304) (10.587) (0.000)

Korea 1.008 1.162 0.165 4.961 7.088 0.128 1.107 1.516 0.119
(0.718) (0.821) (0.000) (9.670) (14.519) (0.000) (1.353) (1.980) (0.000)

Malaysia 0.973 1.133 0.322 6.637 10.206 0.236 3.652 6.805 0.506
(0.764) (0.782) (0.000) (7.801) (11.969) (0.000) (4.056) (7.381) (0.000)

Mexico 2.863 5.370 0.475 9.272 20.267 0.523 6.217 14.306 0.638
(2.136) (3.847) (0.000) (12.577) (27.883) (0.000) (7.556) (18.833) (0.000)

Peru 7.698 14.222 0.365 9.423 20.801 0.541 3.354 7.945 0.713
(5.027) (9.855) (0.000) (10.905) (24.989) (0.000) (2.791) (6.812) (0.000)

SouthAfrica 2.182 3.178 0.525 10.896 21.045 0.507 9.726 18.019 0.510
(1.369) (1.483) (0.000) (10.044) (20.777) (0.000) (9.734) (18.365) (0.000)

Turkey 9.763 12.509 0.284 12.491 23.320 0.523 14.773 24.329 0.291
(5.955) (7.382) (0.000) (10.973) (21.470) (0.000) (13.931) (23.164) (0.000)

Mean of the estimated VaR and CoVaR series (standard deviation in parentheses), the KS Test column
reports the test statistics for the null hypothesis of equality between the VaR and CoVaR presented on
Section 4.2 (p-value in parentheses).

Source: Authors’ calculations

Finally, there is some partial evidence suggesting that the impact of the VIX
index on emerging market CDS has increased, as the KS statistic appears to be higher
in the latest sample compared to samples 1 and 2. Since the KS test statistic is related
to the difference between the CoVaR and the VaR CDFs, increases in this test statistic
indicate a higher CoVaR than VaR across samples. However, no formal statistical test
is available to assess the significance of these increases.

To further illustrate our approach, we have estimated a Copula-CoVaR model
between the Global-EMBI spread and the CDS of each country. This exercise demon-
strates that an aggregated measure of international investors’ appetite for emerging
market risk, such as the EMBI Global spread, can also impact country risk dynamics
(sovereign CDS in this study). In a manner similar to our results using the VIX index,
our exercise suggests the presence of tail-risk dependence between the Global EMBI
spread and country risk dynamics, as discussed in Appendix E.
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6 Concluding Remarks

Our study provides evidence of tail dependence between variables related to the
Global Financial Cycle, namely the VIX index, and emerging market CDS using
a conditional quantile obtained from a Copula-CoVaR model. By comparing the
conditional and unconditional emerging market CDS quantiles, we found that: (1)
for our sample of countries, the conditional emerging market CDS quantiles are
significantly higher than the unconditional ones when the VIX is stressed. This
indicates tail-dependence and demonstrates the relevance of these external variables
during episodes of external stress, as demonstrated in Reboredo and Ugolini, 2016.
(2) These results hold for different sub-periods in our sample, in which international
financial markets have been affected by various risk episodes. Furthermore, there is
partial evidence suggesting that the impact of these external variables on emerging
market CDS has increased.

Our study contributes to the literature on emerging market CDS by demon-
strating the importance of external variables related to the Global Financial Cycle
during stress episodes. These results are particularly relevant for investors when
constructing risk scenarios for their portfolios. Additionally, the Copula-CoVaR ap-
proach may be a more appropriate and rigorous measure for assessing risk when
external financial variables are stressed. As for the implications for policymakers, we
provide further evidence of the relevance of external variables associated with the
global financial cycle in CDS dynamics. Therefore, when constructing country risk
scenarios, policymakers should consider external conditions.

15



References
Abadie, A. (2002). Bootstrap Effects Tests for Distributional Treatment in Instrumental

Variable Models. Journal of the American Statistical Association, 97(457), 284–292.
Adrian, T., & Brunnermeier, M. K. (2011). Covar (Working Paper No. 17454). National

Bureau of Economic Research.
Atil, A., Bradford, M., Elmarzougui, A., & Lahiani, A. (2016). Conditional dependence

of US and EU sovereign CDS: A time-varying copula-based estimation. Finance
Research Letters, 19, 42–53.

Cheuathonghua, M., de Boyrie, M. E., Pavlova, I., & Wongkantarakorn, J. (2022).
Extreme risk spillovers from commodity indexes to sovereign CDS spreads
of commodity dependent countries: A VAR quantile analysis. International
Review of Financial Analysis, 80(102033).

Feng, Q., Wang, Y., Sun, X., Li, J., Guo, K., & Chen, J. (2022). What drives cross-border
spillovers among sovereign CDS, foreign exchange and stock markets? Global
Finance Journal, Forthcoming.

Fernández, C., & Steel, M. F. (1998). On bayesian modeling of fat tails and skewness.
Journal of the American Statistical Association, 93(441), 359–371.

Gilchrist, S., Wei, B., Yue, V. Z., & Zakrajšek, E. (2022). Sovereign risk and financial
risk. Journal of International Economics, 136(103603).

Girardi, G., & Tolga Ergün, A. (2013). Systemic risk measurement: Multivariate
GARCH estimation of CoVaR. Journal of Banking and Finance, 37(8), 3169–3180.

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (2011). On the Relation between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks.
48(5), 1779–1801.

Habib, M. M., & Stracca, L. (2012). Getting beyond carry trade: What makes a safe
haven currency? Journal of International Economics, 87(1), 50–64.

Habib, M. M., & Venditti, F. (2018). The global financial cycle: implications for the
global economy and the euro area. Economic Bulletin Articles, 6.

IMF. (2013). Global Financial Stability Report, April 2013 : Old Risks, New Challenges.
(April), 57–92.

Liu, B. Y., Fan, Y., Ji, Q., & Hussain, N. (2022). High-dimensional CoVaR network con-
nectedness for measuring conditional financial contagion and risk spillovers
from oil markets to the G20 stock system. Energy Economics, 105(105749), 1–17.

Miranda-Agrippino, S., & Rey, H. (2022). The Global Financial Cycle. In G. Gopinath,
E. Helpman, & K. Rogoff (Eds.), Handbook of international economics: Interna-
tional macroeconomics (pp. 1–43). Elsevier.

Naifar, N. (2012). Modeling the dependence structure between default risk premium,
equity return volatility and the jump risk: Evidence from a financial crisis.
Economic Modelling, 29(2), 119–131.

Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International
Economic Review, 47(2), 527–556.

16



Reboredo, J. C., & Ugolini, A. (2016). Quantile dependence of oil price movements
and stock returns. Energy Economics, 54, 33–49.

Sarmiento-Paipilla, M., Cardozo-Alvarado, N., Gamboa-Estrada, F., Gómez-Pineda,
J., León-Rincón, C., Miguélez-Márquez, J., & Ojeda-Joya, J. (2023). Ciclo fi-
nanciero global, flujos de capital y respuestas de política. Revista ESPE-Ensayos
sobre Política Económica, 1–55.

Sun, X., Wang, J., Yao, Y., Li, J., & Li, J. (2020). Spillovers among sovereign CDS,
stock and commodity markets: A correlation network perspective. International
Review of Financial Analysis, 68(101271).

Wang, Q., Liu, M., Xiao, L., Dai, X., Li, M. C., & Wu, F. (2022). Conditional sovereign
CDS in market basket risk scenario: A dynamic vine-copula analysis. Interna-
tional Review of Financial Analysis, 80(102025).

17



Appendices

A Descriptive statistics

Table 3: Descriptive statistics.

Brazil Chile China Colombia Indonesia Korea Malaysia Mexico Peru SouthAfrica Turkey VIX
Panel A: Full Sample

Mean -0.032 0.021 0.010 -0.025 -0.055 0.000 0.009 0.009 -0.039 0.033 0.076 0.001
Maximum 186.535 63.111 67.467 180.586 324.519 133.281 119.397 197.199 161.392 146.450 166.473 24.860
Minimum -124.909 -64.267 -58.911 -126.521 -223.813 -168.551 -101.336 -132.962 -126.103 -82.359 -131.913 -17.640
Std. Dev 8.451 3.712 3.515 8.202 13.302 5.720 5.223 7.309 6.720 7.986 10.716 1.902
Skewness 2.008 0.657 0.626 1.379 3.121 -2.924 1.707 3.816 1.823 2.251 1.575 1.606
Kurtosis 78.531 64.478 70.607 80.910 167.846 263.794 125.902 165.491 117.922 55.388 45.010 25.996

J-B 1198765 806345 966843 1270661 5469435 13497898 3075419 5320983 2698531 598694 394696 133018
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARCH 754.985 462.705 652.526 689.576 433.453 373.964 481.355 609.891 413.825 1052.763 2300.285 757.987
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Corr.VIX 0.325 0.224 0.123 0.307 0.104 0.102 0.113 0.329 0.298 0.214 0.201 1.000

Panel B: Sample 1
Mean -0.371 -0.013 -0.007 -0.270 -0.216 -0.008 0.000 -0.054 -0.222 -0.033 -0.164 0.012
Max 38.217 10.250 10.600 63.167 55.416 6.427 7.793 23.754 55.799 16.733 39.670 7.160
Min -26.955 -8.187 -3.958 -67.834 -91.667 -4.458 -4.625 -10.116 -21.333 -10.750 -32.500 -5.560
SD 6.819 0.835 0.685 10.099 5.583 0.795 0.792 2.332 5.723 1.742 6.863 0.891

Skew 0.696 1.265 4.939 0.080 -4.803 1.542 2.366 1.766 1.605 1.665 0.766 0.820
Kurt 3.511 44.995 81.649 13.574 114.016 13.932 25.802 18.450 14.597 18.592 4.627 10.751

J-B 435 61943 206307 5620 399301 6210 20989 10763 6813 10881 724 3607
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARCH 84.300 178.115 500.374 65.335 1264.333 93.188 30.892 271.451 313.926 94.793 80.899 137.631
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Corr.VIX 0.259 0.014 -0.040 0.196 -0.005 0.009 -0.003 0.178 0.142 0.071 0.130 1.000

Panel C: Sample 2
Mean 0.068 0.028 0.038 0.013 -0.016 0.008 0.053 0.050 -0.004 0.079 0.036 -0.004
Max 186.535 63.111 67.467 180.586 324.519 133.281 119.397 197.199 161.392 107.978 125.205 16.540
Min -124.909 -64.267 -58.911 -126.521 -223.813 -168.551 -101.336 -132.962 -126.103 -82.359 -131.913 -17.360
SD 9.316 4.667 4.529 8.820 17.652 7.822 6.614 8.956 8.475 9.001 10.142 1.978

Skew 2.119 0.550 0.467 2.147 2.566 -2.188 1.454 3.722 1.566 1.141 0.121 0.635
Kurt 89.107 45.894 47.035 101.770 101.721 142.795 89.700 135.162 87.043 32.865 36.047 15.589

J-B 807737 213905 224633 1053117 1052913 2071574 817536 1859904 770015 110156 131897 24829
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARCH 330.706 224.037 302.883 276.213 221.152 217.878 217.798 296.755 207.603 231.736 163.771 268.276
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Corr.VIX 0.376 0.240 0.118 0.366 0.116 0.127 0.119 0.379 0.377 0.233 0.255 1.000

Panel D: Sample 3
Mean -0.030 0.027 -0.027 0.034 -0.042 -0.008 -0.059 -0.027 -0.005 -0.009 0.260 0.004
Max 91.780 28.320 26.514 61.130 50.783 12.227 43.280 54.815 26.993 146.450 166.473 24.860
Min -81.699 -32.625 -19.943 -83.856 -49.521 -15.214 -38.337 -60.236 -29.734 -49.628 -127.486 -17.640
SD 7.647 2.664 2.202 5.743 5.294 1.366 3.662 5.759 2.751 8.090 12.960 2.128

Skew 1.922 0.660 1.037 -0.298 1.558 -0.052 1.322 1.363 0.887 4.182 2.615 2.734
Kurt 42.999 38.038 26.210 57.082 32.264 26.489 49.960 40.788 26.634 80.617 42.917 32.034

J-B 115317 89632 42771 201631 65010 43418 154870 103400 44086 406460 115656 65346
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARCH 113.254 68.490 109.377 84.876 110.280 138.586 143.803 111.762 71.356 700.659 2852.210 298.191
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Corr.VIX 0.283 0.263 0.182 0.269 0.126 0.090 0.136 0.292 0.253 0.224 0.150 1.000

Daily data from October 10, 2004 to August 10, 2022 (Panel A), October 10, 2004 to July
31, 2007 (Panel B), August 1, 2007 to November 30, 2016 (Panel C) and December 1, 2016
to August 10, 2022 (Panel D). J-B denotes the Jarque-Bera statistic (p-value in parentheses)
for normality and ARCH indicates Engle’s Lagrange Multiplier test (p-value in parentheses)
for heteroskedasticity with 20 lags. Corr.VIX denotes Kendall correlation between the first
differences of each country’s CDS’ and the first differences of the VIX index.

Source: Authors’ calculations
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B VIX index and alternative Global Financial Cycle vari-
ables

Figure 4 illustrates the relationship between the VIX and other variables associated
with the Global Financial Cycle: the US financial conditions index and a principal
component of global equity prices Sarmiento-Paipilla et al., 2023. An increase in these
indices indicates improved financial conditions and higher equity prices. Conversely,
an increase in the VIX index represents stressed market conditions and risk-off be-
havior. Therefore, a negative correlation between these variables is expected.
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Figure 4: Time series plots of the daily changes of the VIX index and alternative variables of the
global financial cycle. Daily data from 2004 to 2022. Note: The left-hand side axis displays the kernel.

Source: Bloomberg, Sarmiento-Paipilla et al., 2023 and authors’ calculations
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C Models results.

Table 4: Marginal model estimates for sample 1 (Oct/10/2004 - Jul/31/2007).

Brazil Chile China Colombia Indonesia Korea Malaysia Mexico Peru SouthAfrica Turkey VIX
Mean Eq.

𝜑0 -0.249 -0.017 -0.008 0.350 -4.0𝑒−9 -0.019 -0.014 -0.080 -0.295 -0.049 -0.316 0.025
(0.160) (0.010) (0.010) (0.170) (2.7𝑒−7) (0.020) (0.020) (0.050) (0.130) (0.040) (0.240) (0.020)

𝜑1 0.143 -0.318 0.154 0.116 0.075 0.168 0.146 -0.015 0.218 -0.103
(0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.030)

𝜑2 -0.167 0.042 0.037 -0.107
(0.040) (0.040) (0.040) (0.040)

𝜑3 -0.067 0.090
(0.040) (0.040)

𝜑4 -0.027
(0.030)

Variance Eq.
𝜔 0.213 0.013 0.038 0.918 3.4𝑒−16 0.017 0.019 0.077 0.276 0.266 1.855 0.034

(0.150) (0.010) (0.010) (0.340) (3.1𝑒−7) (0.010) (0.010) (0.050) (0.180) (0.110) (0.710) (0.010)
𝛼1 0.178 0.240 0.617 0.293 0.776 0.303 0.354 0.266 0.242 0.492 0.324 0.251

(0.040) (0.060) (0.160) (0.060) (0.080) (0.080) (0.080) (0.060) (0.060) (0.140) (0.100) (0.040)
𝛽1 0.872 0.710 0.501 0.780 0.075 0.757 0.702 0.806 0.829 0.674 0.779 0.857

(0.030) (0.050) (0.080) (0.030) (0.010) (0.050) (0.050) (0.050) (0.040) (0.080) (0.060) (0.020)
𝛾1 -0.096 0.098 -0.228 -0.147 0.271 -0.122 -0.110 -0.140 -0.138 -0.321 -0.234 -0.305

(0.040) (0.090) (0.160) (0.070) (0.130) (0.080) (0.100) (0.060) (0.050) (0.130) (0.090) (0.050)
Asymmetry 1.138 0.998 1.089 1.029 1.014 1.022 1.105 1.079 1.127 1.065 1.045 1.333

(0.060) (0.040) (0.050) (0.040) (0.020) (0.050) (0.050) (0.050) (0.060) (0.050) (0.050) (0.070)
Tail 4.925 3.532 3.313 4.014 2.299 4.388 4.322 3.724 4.724 2.857 4.645 3.686

(0.690) (0.380) (0.390) (0.540) (0.030) (0.720) (0.700) (0.440) (0.670) (0.270) (0.820) (0.500)

AR-gjrGARCH model estimates (equations (3)-(5)) for the sample 1 ranging from October
10, 2004 to July 31, 2007. Standard errors in Parentheses. Asymmetry and Tail refer to the
skewness and degrees of freedom of the skewed-t distribution of the standardized errors,
respectively.

Source: Authors’ calculations

20



Table 5: Marginal model estimates for sample 2 (Aug/01/2007 - Nov/30/2016).

Brazil Chile China Colombia Indonesia Korea Malaysia Mexico Peru SouthAfrica Turkey VIX
Mean Eq.

𝜑0 0.124 0.045 0.011 0.084 4.4𝑒−10 -4.3𝑒−9 0.003 0.151 0.132 0.166 0.181 0.044
(0.080) (0.050) (0.040) (0.080) (3.650) (5.640) (0.010) (0.070) (0.070) (0.100) (0.120) (0.020)

𝜑1 0.186 0.060 0.028 0.156 0.039 0.033 0.079 0.162 0.132 0.136 0.125 -0.086
(0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.000) (0.020) (0.020) (0.020) (0.020) (0.020)

𝜑2 -0.019 -0.004 -0.009 0.013 0.024 0.019 -0.020 -0.015 -0.027 -0.080
(0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.020)

𝜑3 -0.019 -0.003 -0.006 -0.022 -0.052
(0.020) (0.010) (0.010) (0.020) (0.020)

𝜑4 -0.013 -0.007 -0.001 0.009 -0.032
(0.020) (0.010) (0.010) (0.020) (0.020)

𝜑5 -0.034 -0.024
(0.020) (0.020)

Variance Eq.
𝜔 0.229 0.205 0.453 0.200 2.2𝑒−16 2.2𝑒−16 2.2𝑒−16 0.25 0.379 0.987 0.776 0.085

(0.070) (0.060) (0.110) (0.060) (4.1𝑒−7) (8.4𝑒−7) (1.2𝑒−5) (0.060) (0.100) (0.250) (0.210) (0.020)
𝛼1 0.177 0.227 0.387 0.191 0.999 0.735 0.232 0.226 0.241 0.272 0.197 0.367

(0.020) (0.030) (0.050) (0.020) (0.060) (0.010) (0.000) (0.030) (0.040) (0.040) (0.030) (0.050)
𝛽1 0.890 0.835 0.707 0.885 0.209 0.316 0.895 0.870 0.856 0.810 0.881 0.814

(0.010) (0.020) (0.030) (0.010) (0.010) (0.040) (0.000) (0.020) (0.020) (0.020) (0.020) (0.020)
𝛾1 -0.132 -0.123 -0.186 -0.149 0.999 -0.106 -0.245 -0.184 -0.187 -0.160 -0.164 -0.367

(0.020) (0.030) (0.050) (0.020) (0.140) (0.060) (0.000) (0.030) (0.030) (0.040) (0.030) (0.050)
Asymmetry 1.109 1.052 1.023 1.098 1.031 1.031 1.076 1.122 1.127 1.075 1.077 1.368

(0.030) (0.030) (0.020) (0.030) (0.010) (0.010) (0.020) (0.030) (0.030) (0.030) (0.030) (0.040)
Tail 5.753 4.183 3.018 5.836 2.844 3.116 3.433 4.740 4.652 4.247 4.967 4.225

(0.640) (0.360) (0.120) (0.68) (0.050) (0.020) (0.110) (0.500) (0.470) (0.370) (0.500) (0.400)

AR-gjrGARCH model estimates (equations (3)-(5)) for the sample 2 ranging from August 1,
2007 to November 30, 2016. Standard errors in Parentheses. Asymmetry and Tail refer to the
skewness and degrees of freedom of the skewed-t distribution of the standardized errors,
respectively.

Source: Authors’ calculations
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Table 6: Marginal model estimates for sample 3 (Dec/01/2016 - Aug/10/20220).

Brazil Chile China Colombia Indonesia Korea Malaysia Mexico Peru SouthAfrica Turkey VIX
Mean Eq.

𝜑0 -0.246 -0.009 -0.052 -0.011 -0.053 3.0𝑒−7 -0.114 -0.034 -0.082 -0.096 -0.090 0.082
(0.1130) (0.0520) (0.0340) (0.098) (0.0550) (2.6𝑒−6) (0.0450) (0.080) (0.0570) (0.100) (0.1640) (0.0230)

𝜑1 0.303 0.264 0.144 0.360 0.066 0.086 0.263 0.265 0.177 -0.065
(0.028) (0.0260) (0.0270) (0.0250) (0.020) (0.0270) (0.0270) (0.0250) (0.0270) (0.0250)

𝜑2 -0.073 -0.044 -0.049 0.027 -0.074
(0.0270) (0.0250) (0.020) (0.0240) (0.0260)

𝜑3 -0.009 0.037
(0.020) (0.0230)

𝜑4 -0.031
(0.018)

𝜑5 0.024
(0.019)

Variance Eq.
𝜔 1.475 0.188 0.093 0.546 0.232 2.1𝑒−11 0.172 0.523 0.262 0.234 4.103 0.086

(0.3770) (0.0520) (0.0410) (0.1360) (0.0610) (1.0𝑒−6) (0.0810) (0.1510) (0.0770) (0.150) (1.0760) (0.0170)
𝛼1 0.391 0.274 0.295 0.324 0.196 0.513 0.259 0.284 0.254 0.156 0.381 0.504

(0.0730) (0.0630) (0.0510) (0.0610) (0.0370) (0.0090) (0.0660) (0.058) (0.0590) (0.0040) (0.0570) (0.050)
𝛽1 0.674 0.775 0.789 0.736 0.904 0.408 0.791 0.778 0.764 0.921 0.614 0.792

(0.0420) (0.038) (0.0360) (0.0330) (0.0110) (0.0440) (0.056) (0.0340) (0.040) (0.0140) (0.0340) (0.019)
𝛾1 -0.127 -0.109 -0.158 -0.115 -0.192 0.155 -0.096 -0.121 -0.036 -0.152 0.007 -0.509

(0.0750) (0.0630) (0.0540) (0.0650) (0.0370) (0.0720) (0.0520) (0.058) (0.0660) (0.0020) (0.0730) (0.0510)
Asymmetry 1.074 1.139 1.162 1.120 1.086 1.009 1.078 1.100 1.120 1.060 1.076 1.449

(0.0370) (0.0410) (0.038) (0.038) (0.0310) (0.0160) (0.0320) (0.038) (0.0390) (0.0340) (0.0310) (0.0530)
Tail 3.710 3.382 3.452 3.708 2.567 2.761 3.073 3.498 3.191 3.542 3.568 3.379

(0.335) (0.325) (0.279) (0.342) (0.105) (0.051) (0.211) (0.319) (0.279) (0.326) (0.215) (0.269)

AR-gjrGARCH model estimates (equations (3)-(5)) for the sample 3 ranging from December
1, 2016 to August 10, 2022. Standard errors in Parentheses. Asymmetry and Tail refer to the
skewness and degrees of freedom of the skewed-t distribution of the standardized errors,
respectively.

Source: Authors’ calculations

Table 7: Copula parameter estimates.

Sample 1 Sample 2 Sample 3
(Oct/10/2004 - Jul/31/2007) (Aug/01/2004 - Nov/30/2016) (Dec/01/2016 - Aug/10/20220)

Type Params AIC Type Params AIC Type Params AIC

Brazil Dyn-Gumbel copula 1.343 -155.593 Dyn-Student copula 0.518 -858.756 Dyn-Gumbel copula 1.367 -337.102[14.743]

Chile Rotated Clayton copula 0.053 -0.479 Dyn-Student copula 0.368 -406.697 Rotated BB7 1.209 -311.796[12.198] [0.445]

China Dyn-Gaussian copula -0.047 0.477 Gumbel copula 1.138 -141.490 Student copula 0.313 -164.797[18.096]

Colombia Gumbel copula 1.240 -93.130 Dyn-Student copula 0.530 -846.195 Student copula 0.458 -367.133[14.078] [21.286]

Indonesia Joe copula 1.013 -5.637 Dyn-Student copula 0.160 -107.101 Dyn-Gaussian copula 0.242 -110.68036.226

Korea Gaussian copula 0.084 -3.308 Dyn-Gaussian copula 0.165 -138.797 Dyn-Gaussian copula 0.129 -59.161

Malaysia Rotated Clayton copula 0.062 -1.004 Student copula 0.187 -112.136 Student copula 0.268 -124.900[30.000] [16.606]

Mexico Student copula 0.292 -74.558 Dyn-Student copula 0.546 -886.209 Dyn-Student copula 0.449 -364.674[12.450] [11.007] [15.106]

Peru Dyn-Student copula 0.212 -58.375 Dyn-Student copula 0.527 -838.929 Dyn-Student copula 0.426 -317.903[6.387] [10.428] [12.781]

South Africa Rotated Clayton copula 0.190 -21.928 Dyn-Student copula 0.364 -370.676 Dyn-Student copula 0.334 -186.614[13.070] [31.908]

Turkey Gumbel copula 1.177 -53.557 Dyn-Student copula 0.396 -433.560 Dyn-Student copula 0.242 -104.775[15.908] [32.648]

Parameter estimates and AIC values for the best-fitting copula for countries’ CDS with the
VIX index. For dynamic copulas (Dyn), the sample average of the parameters is presented.
If the chosen copula has a second parameter, it is shown in brackets.

Source: Authors’ calculations
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D CDFs for last sample
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Figure 5: Cumulative distribution function (CDF) of the estimated VaR and CoVaR series given
extreme VIX movements on unconditional and conditional quantile CDS changes in sample 3.
Source: Authors’ calculations
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E Alternative estimation using the Global EMBI spread

In Table 8 and Figure 6, we present the results of the Value-at-Risk (VaR) and Condi-
tional Value-at-Risk (CoVaR) analyses, using the JP Morgan Global EMBI (Emerging
Markets Bond Index) spread. This financial metric measures the difference between
the yields of bonds issued by emerging market governments and the yields of US
Treasury bonds, and is often used as an indicator of the risk associated with investing
in emerging market debt.8 While the Global EMBI spread may have been affected by
the Global Financial Cycle, it also provides a useful signal of international investors’
appetite for emerging market risk. Our analysis reveals that, with the exception of
Chile during the first sample period, the computed CoVaR values are higher than
the VaR for all sovereign Credit Default Swaps (CDS) and across all three samples.
These findings suggest the presence of tail-risk dependence between the Global EMBI
spread and country risk dynamics.

Table 8: Statistics and hypothesis testing for the impact of extreme EMBI movements on uncondi-
tional and conditional CDS quantiles.

Sample 1 Sample 2 Sample 3

(Oct/10/2004 - Jul/31/2007) (Aug/01/2004 - Nov/30/2016) (Dec/01/2016 - Aug/10/2022)

Country VaR average CoVaR average KS Test VaR average CoVaR average KS Test VaR average CoVaR average KS Test

Brazil 9.652 17.626 0.388 11.015 25.500 0.454 8.192 19.802 0.690
(5.502) (9.915) (0.000) (11.484) (25.044) (0.000) (10.223) (25.605) (0.000)

Chile 0.852 0.870 0.029 5.548 11.882 0.589 5.158 7.922 0.776
(0.821) (0.837) (0.515) (5.109) (11.709) (0.000) (2.962) (7.683) (0.000)

China 0.777 0.999 0.158 5.774 9.293 0.434 5.834 6.590 0.608
(0.645) (1.116) (0.000) (5.469) (9.934) (0.000) (5.341) (5.894) (0.000)

Colombia 11.241 19.402 0.421 9.738 20.915 0.467 6.006 15.848 0.694
(11.724) (19.143) (0.000) (11.348) (25.922) (0.000) (7.135) (17.580) (0.000)

Indonesia 2.244 2.840 0.104 15.410 25.480 0.223 5.211 15.692 0.734
(5.937) (6.152) (0.000) (28.730) (57.235) (0.000) (5.304) (15.813) (0.000)

Korea 1.008 1.340 0.303 5.961 8.760 0.190 1.107 1.818 0.160
(0.718) (0.939) (0.000) (9.670) (19.532) (0.000) (1.353) (2.690) (0.000)

Malaysia 0.973 1.051 0.094 6.604 12.464 0.321 5.652 8.913 0.624
(0.764) (0.821) (0.004) (7.825) (16.261) (0.000) (4.056) (10.549) (0.000)

Mexico 2.863 7.058 0.590 9.272 21.307 0.545 6.217 16.037 0.739
(2.136) (5.526) (0.000) (12.577) (29.792) (0.000) (7.556) (20.122) (0.000)

Peru 7.698 16.601 0.460 9.423 21.457 0.573 5.354 9.011 0.783
(5.027) (10.311) (0.000) (10.905) (25.919) (0.000) (2.791) (7.694) (0.000)

SouthAfrica 2.182 2.873 0.418 10.896 25.836 0.617 9.726 25.545 0.706
(1.369) (1.789) (0.000) (10.043) (25.268) (0.000) (9.734) (25.127) (0.000)

Turkey 9.763 20.235 0.704 12.491 27.448 0.629 15.773 35.428 0.458
(5.955) (11.442) (0.000) (10.972) (25.936) (0.000) (15.931) (32.379) (0.000)

Mean of the estimated VaR and CoVaR series (standard deviation in parentheses), the KS Test column
reports the test statistics for the null hypothesis of equality between the VaR and CoVaR presented on
Section 4.2 (p-value in parentheses).

Source: Authors’ calculations

8Specifically, the spread is calculated as the yield on JP Morgan’s EMBI Global index minus the
yield on a US Treasury bond of similar maturity. A higher spread suggests that investors demand
a higher return for investing in emerging market debt, which is generally considered riskier than
US Treasury bonds, a safe haven asset. Conversely, a lower spread indicates that investors are more
willing to take on the risk associated with investing in emerging market debt.
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Figure 6: Time series plots for the impact of extreme Global-EMBI movements on unconditional
(VaR) and conditional (CoVaR) CDS quantiles.
Source: Authors’ calculations
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