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Abstract

Since July 2021, Banco de la República strengthened its forecasting process and communica-
tion instruments, by involving predictive densities in the projections of its models, PATACON
and 4GM. This paper presents the main theoretical and empirical elements of the predictive
density approach for macroeconomic forecasting. This model-based methodology allows to cha-
racterize the balance of risks of the economy, and to quantify their effects through a joint pro-
bability distribution of forecasts. We estimate this distribution based on the simulation of DSGE
models, preserving the general equilibrium relationships and their macroeconomic consistency.
We also illustrate the technical criteria used to represent prospective factors of risk through the
probability distributions of shocks.
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Resumen:

Desde julio de 2021, el Banco de la República fortaleció su proceso de pronóstico y sus instru-
mentos de comunicación al incorporar densidades predictivas en las proyecciones de sus modelos,
PATACON y 4GM. Este art́ıculo presenta los principales elementos teóricos y emṕıricos del en-
foque de densidad predictiva para los pronósticos macroeconómicos. Esta metodoloǵıa basada
en modelos permite caracterizar el balance de riesgos de la economı́a y cuantificar sus efectos
mediante una distribución de probabilidad conjunta de los pronósticos. Esta distribución se
estima mediante la simulación de los modelos DSGE, preservando las relaciones de equilibrio
general y la coherencia macroeconómica. También se ilustran los criterios técnicos utilizados
para representar los factores de riesgo prospectivos a través de las distribuciones de probabilidad
de los choques.

Palabras clave: Pronósticos macroeconómicos, balance de riesgos, incertidumbre, pronósticos
bayesianos, modelos de poĺıtica monetaria.
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1 Introduction

Generating macroeconomic forecasts and assessing their consistency are crucial tasks in the mone-
tary policy agenda of central banks, especially in economies pursuing an inflation targeting strategy
(Svensson, 2010). Therefore, Banco de la República (BanRep) continuously forecasts the main
macroeconomic variables for an eight-quarter policy horizon, in an exercise that integrates the tech-
nical staff, theoretically grounded modeling tools, and the critical evaluation of empirical aspects of
the economy (González et al., 2019, 2020). The results of these forecasting exercises contribute to
the monetary policy decisions adopted by BanRep’s Board of Directors and are published quarterly
in the Monetary Policy Report.

These forecasts are conditional on the assessment of the current and future state of the economy,
including projections of external variables and the endogenous response of monetary policy that
brings inflation to its target level and stabilizes output and employment. However, since monetary
policy operates in an environment of uncertainty (Friedman, 1972; Batini & Nelson, 2001; Goodhart,
2001), the assessment of risk factors on macroeconomic forecasts becomes an essential element in
the policy decision-making process. This assessment is formalized through a balance of risks.1

The balance of risks implies a prospective assessment of the shocks that the economy could face
over the forecast horizon and that affect the expected dynamics of macroeconomic variables. Assess-
ing these risks is challenging because it requires characterizing the origin of the shocks, determining
whether they are permanent or transitory (their degree of persistence), as well as communicating
these elements to the public.

The literature highlights mainly three methods used by central banks to characterize and com-
municate their prospective balance of risks: qualitative assessment, symmetric and asymmetric
fan-charts and predictive densities (Knüppel & Schultefrankenfeld, 2012; Bundesbank, 2010).2 The
latter two strategies follow a quantitative approach. The qualitative assessment presents a detailed
description of what the state of the economy might be in the future and its likely risks using a nar-
rative approach, without providing an explicit quantification of the different sources of uncertainty
or their magnitude.

Fan-charts characterize the balance of risks in macroeconomic forecasts using a probability dis-
tribution that is generated off-model and superimposed on the central forecast. The estimation of
fan-charts follows the classical approach of confidence intervals based on the historical volatility
of forecast errors and an assumption about the density function. The symmetric fan-chart (Blix
& Sellin, 1999) assumes a normal distribution to represent balanced risks, while the asymmetric
fan-chart (Britton et al., 1998) considers a two-piece normal distribution to characterize the skewed
balance of risks. Symmetric fan-charts follow a statistical approach, i.e., they do not rely on the
economic structure of a macroeconomic model or the general equilibrium relationships on which the
central forecast is built. Asymmetric fan-charts are based on marginal probability distributions,

1In this paper we treat as indistinct the terms uncertainty and risk as is common in the DSGE literature. However,
we are aware of the difference between these two concepts proposed by Knight (1921).

2For example, the central bank of France, the Sveriges Riskbank and the European Central Bank have adopted
symmetric fan-charts for their communication. Bank of England and the central banks of Hungary, Brazil and Peru
have preferred asymmetric fan-charts. Qualitative assessment is explicitly used by the central bank of Japan and the
Board of Governors of the U.S. Federal Reserve, and complements the analysis of central banks using quantitative
tools. Risk characterization and its communication with predictive densities have been considered by the central
banks of Norway and Canada, Bank of Israel (2019), and the technical staff of the New York Federal Reserve (Del
Negro et al., 2013) and the Reserve Bank of New Zealand (Benes et al., 2009).
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which do not guarantee macroeconomic consistency between the densities of different variables.

BanRep has previously adopted the methods described above to characterize and communicate
uncertainty about its risks. Until 2018, in its Inflation Report, BanRep made explicit the risk factors
on the GDP growth rate and headline inflation using asymmetric fan-charts. In 2019, with its new
forecasting process and its new Monetary Policy Report, BanRep adopted symmetric fan-charts
that reflected risks on projections through the volatility of historical forecast errors (González et
al., 2019). In 2020, as a consequence of the COVID-19 pandemic and the difficulty in reflecting
the uncertainty caused by this shock, BanRep suspended the publication of fan-charts and adopted
qualitative risk assessment.

Since July 2021, BanRep’s Technical Staff (TS) introduced the Predictive Density (PD) approach
to characterize and communicate its assessment of risk factors that could affect its macroeconomic
forecasts. This is a model-based approach that aims to characterize, quantify and communicate the
prospective balance of risks using a joint probability distribution over the forecast of all variables,
preserving general equilibrium relationships, and therefore, macroeconomic consistency (Del Negro
& Schorfheide, 2013; Del Negro et al., 2016). The PD approach considers two elements to simulate
this distribution. First, the transmission mechanisms implicit in the economic structure of the
model. Second, the exogenous distributions of the shocks that reflect the qualitative analysis of the
risks considered by the TS.

BanRep adopted the PD methodology on the forecasts generated by PATACON (González et
al., 2011) and 4GM (González et al., 2020), its two general equilibrium models for macroeconomic
forecasting, and combined the results to obtain a unified PD. This approach illustrates the sensitivity
of macroeconomic forecasts to risk factors, quantifies their importance in probabilistic terms, and
helps to define a more robust monetary policy recommendation in uncertain environments.

In this paper we outline the main theoretical aspects of the PD approach, describe its appli-
cation using the macroeconomic models, PATACON and 4GM, and illustrate how this method is
implemented within the TS forecasting process. We also illustrate the technical criteria adopted
to characterize the mode, variance and skewness of the probability distributions of the shocks, and
hence, to reflect the prospective balance of risks.

This paper is divided into five sections. The first is this introduction. In Section 2 we present the
theoretical aspects of the PD methodology. In Section 3 we characterize the probability distribution
of shocks. In Section 4 we illustrate how to combine the distributions of both models to produce a
unified PD. Finally, we offer some concluding remarks.

2 Predictive Densities on Macroeconomic Forecasts

Consider the reduced-form solution of a rational expectations model given by the state-space rep-
resentation

Yt = Z(θ)St +H(θ)νt, (1)

St = T (θ)St−1 +R(θ)εt, (2)
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where equations (1) and (2) are the measurement and transition equations, respectively.3 The first
equation links the vector of observed variables Yt to the set of state variables St through the matrix
Z(θ), where θ is the vector of structural parameters. This equation also accounts for the vector of
measurement errors, νt, which is mapped to Yt through the matrix H(θ).4

Equation (2) defines the transition dynamics for St from the state variables in the previous period
St−1 and the structural shocks or innovations εt via the matrices T (θ) and R(θ), respectively. The
measurement and transition equations are linear, while the errors νt and εt are assumed to follow a
normal distribution.

The system of equations (1) - (2) generates forecasts whose dynamics are explained by the eco-
nomic structure of the model, its transmission channels and the structural shocks faced by the
economy (Smets & Wouters, 2003, 2007; Christiano et al., 2003). In the framework of Bayesian
statistics, the analysis is based on the probability distribution of forecasts, also called PD. This dis-
tribution reflects the probability assigned to the possible future realizations of a variable conditional
on the observed data (Geweke & Whiteman, 2006).

Following Del Negro & Schorfheide (2013), for the model described by equations (1) and (2), the
one-step ahead predictive density P (YT+1|Y1:T ) is given by

P (YT+1|Y1:T ) =

∫
θ

[∫
P (YT+1|ST+1, θ)P (ST+1, ST |θ, Y1:T )d(ST+1, ST )

]
P (θ|Y1:T )dθ, (3)

where P (ST+1, ST |θ, Y1:T ) = P (ST+1|ST , θ, Y1:T )P (ST |θ, Y1:T ) is the joint conditional distribution of
future and current states, P (θ|Y1:T ) is the posterior distribution of the parameters, and P (YT+1|ST+1, θ)
is the predictive likelihood.

Equation (3) captures three sources of uncertainty (Del Negro & Schorfheide, 2013).5 First, the
risk implicit in the estimates of the unobserved state variables within the model (e.g., the output gap
and inflation expectations), which is represented by the conditional density P (ST |θ, Y1:T ). Second,
uncertainty about future realizations of state variables, denoted by the density P (ST+1|ST , θ, Y1:T ).
The risk comes from the structural shocks εt, whose probability distribution reflects the qualitative
assessment of the exogenous factors that could affect the economy in the future. Third, the uncer-
tainty associated with the estimated parameters and their impact on the dynamics of endogenous
variables and the law of motion of exogenous processes. This risk is expressed by the posterior
distribution P (θ|Y1:T ) (Geweke & Whiteman, 2006).

As usual in practice, we adopt the practitioners shortcut illustrated by Del Negro & Schorfheide
(2013) to remove parameter uncertainty in the PD, and focus the analysis on the risks arising
from latent variables and future shocks. This shortcut replaces the posterior parameter distribution
P (θ|Y1:T ) with a point estimator, such as the posterior mode θ∗. Although this strategy underesti-
mates the uncertainty, the PDs computed with this shortcut and those provided by the full Bayesian
approach should be similar, since the posterior distribution is concentrated around its mode.

Under the practitioners shortcut, the one-step ahead predictive density P (YT+1|Y1:T ) can be

3This particular reduced state-space form is obtained by using the generalized Schur decomposition to integrate
future expectations (Klein, 2000).

4These errors are introduced to recognize that variables may be measured with noise, and to capture the variance
of the observed variables, improving the explanatory power of the model.

5Note that measurement errors, νt, are zero in forecast.
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written as

P (YT+1|Y1:T ) =

∫
P (YT+1|ST+1, θ

∗)P (ST+1, ST |θ∗, Y1:T )d(ST+1, ST ), (4)

where P (ST+1, ST |θ∗, Y1:T ) = P (ST+1|ST , θ∗, Y1:T )P (ST |θ∗, Y1:T ).

We can simulate the predicted density in equation (4) using Monte Carlo methods. Algorithm
1 describes the steps necessary to obtain this simulation, while Figure 1 shows them schematically.
We first apply the Kalman filter (KF) to the system of equations (1)-(2) conditioning on the mode
of the posterior distribution of the parameters, θ∗, and the data Y1:T . Kalman filtering takes time
series of noisy observations Y1:T and produces minimum mean-square error estimates of both the
structural shocks ε1:T and the latent state variables S1:T , whose conditional density at time T follows
P (ST |θ∗, Y1:T ). Next, we randomly draw M sequences of structural shock combinations, εT+1:T+H ,
from specific probability distributions for periods T + 1 : T +H, with H being the forecast hori-
zon. In Section 3 we will describe in detail the characterization of these distributions, which are
fundamental to represent the risks.

Taking the data, YT , and the mean of the estimates of the latent state variables in ST at time T
as a starting point, for each draw m = 1, . . . ,M and forecast horizon T + 1 : T +H, we predict the
equations (1)-(2) conditional on the simulated sequence of shocks εnT+1:T+H . This process generates
a set of M forecast trajectories of ST+1:T+H and YT+1:T+H . Finally, from these M trajectories
we use a Kernel estimator (KE) to estimate the density functions for each period over the forecast
horizon h = 1, . . . ,H, P (ST+h|ST+h−1, θ

∗, Y1:T+h−1) and P (YT+h|Y1:T+h−1), respectively. The latter
corresponds to the PD defined in equation (4).

Algorithm 1 Predictive Density Estimation

1. Take the mode of the posterior distribution of the parameters, θ∗.
2. Apply the KF over equations (1)-(2) conditioning on θ∗ and data Y1:T .
3. Recover the mean estimates of S1:T from the density P (St|θ∗, Y1:t) for t = 1, ..., T .
4. Take YT and ST as a starting point for forecasting.
5. For each draw m = 1, . . . ,M , predict equations (1)-(2) conditional on εnT+1:T+H .
6. Recover the M forecast paths of ST+1:T+H and YT+1:T+H .
7. For h = 1, . . . ,H, compute P (ST+h|ST+h−1, θ

∗, Y1:T+h−1) over M forecasts of ST+h using a
KE.

8. For h = 1, . . . ,H, use a KE to compute P (YT+h|Y1:T+h−1) over M forecasts of YT+h.

3 Risk characterization

The balance of risks presents the assessment of the different sources of uncertainty that could affect
macroeconomic forecasts and the monetary policy recommendation. Its formulation involves the
prospective identification of the factors that could affect the economy in the future and, therefore,
the expected dynamics of macroeconomic variables.
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Figure 1: Predictive Density Estimation
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We quantitatively represent the risk factors through the probability distributions of the vector if
structural shocks, which we initially assume to follow a normal distribution with mean vector µ = 0
and variance matrix Σ, εT+1:T+H ∼ N(µ,Σ). As illustrated above, for the filtering process up to
time T we apply a standard linear Kalman filter to the system of equations (1)-(2).

For forecasting, we follow a conditioning strategy that is different from the Kalman filtering.
Under this strategy, we solve equations (1)-(2) to find the values of specific shocks to condition
the measurement variables to certain values over the forecasting horizon. This approach allows
considering shocks that follow distributions other than normal. Further, it allows quantifying the
marginal effect of each source of uncertainty on the PD estimate.

This section discuss the technical criteria adopted by the TS to characterize the balance of risks
through changes in the mode, variance and skewness of the distributions of shocks used in the
PATACON and 4GM models.

3.1 Mode

Under the assumption of shocks εT+1:T+H ∼ N(0,Σ), the system of equations (1)-(2) generates
unconditional forecasts of all variables, which return to their steady-state values according to the
dilution of the filtered shocks up to time T since there are no additional innovations. However, for
policy decision making it is crucial to have forecasts conditioned on exogenous information, such
as GDP nowcast, short-term forecast of inflation, and assumed paths for foreign variables (e.g., oil
price and FED interest rate).6

Over the forecast horizon, we include exogenous conditioning in macroeconomic models through
structural shocks, which are drawn from distributions whose mode ηT+1:T+H is set to a non-zero
value to reproduce the central forecast path of these variables. We adopt the News strategy (Del
Negro & Schorfheide, 2013) to include external information one-period-ahead, ZT+1, which provides

6Nowcasting and time series forecasting models often outperform short-term projections generated by structural
DSGE models. However, the latter usually produce better medium- and long-term forecasts than the former (Smets
& Wouters, 2007; Adolfson et al., 2007).
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additional knowledge of the state variables, ST+1, and the forecasts of the observed variables, YT+1.7

By conditioning on the exogenous data, ZT+1, we can replace the conditional distribution of
future states in equation (4) by P (ST+1|ST , θ∗, Y1:T , ZT+1). To simulate this density function for
h = 1, . . . ,H steps ahead, we generate a sequence of innovations εT+1:T+H ∼ N(µT+1:T+H ,Σ)),
µ ∈ R, such that the mean vector µT+1:T+H = ηT+1:T+H guarantees that YT+1:T+H = ZT+1:T+H .8

As an illustration, Figure 2 shows a hypothetical conditioning for the future path of the U.S.
FED interest rate.9 This figure shows the conditioned path (red line) for this rate, and the path
that would have been projected (black line) with the 4GM model. The assumption about the
central path for the FED interest rate is the result of the analysis performed by TS on data from
U.S. financial analysts’ projections, traders’ surveys, futures market operations, FED press releases,
among others.

Figure 2: Conditioning of the FED Interest Rate
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Note: In this example, the conditioned path (red dashed-line) corresponds to the observed value of the variable.

3.2 Variance

So far we have simulated innovations εT+1:T+H assuming a diagonal, time-invariant variance-
covariance matrix Σ. However, to capture different levels of uncertainty over the policy horizon,
we relax this assumption by allowing the variance of the distribution of shocks to be time-varying,
ΣT+1:T+H .

For h = 1, . . . ,H steps ahead, we simulate structural shocks εT+1:T+H ∼ N(µT+1:T+H ,ΣT+1:T+H)
that follow a normal distribution with mean vector µ and variance matrix ΣT+1:T+H . As in Section
3.1, µT+1:T+H = ηT+1:T+H guarantees that YT+1:T+H = ZT+1:T+H .

In what follows we introduce three methodologies for defining the volatility of shocks: external
information sources, shocks estimated within models, and the Markov switching approach.

External Information Sources

7This information set is orthogonal to the measurement error νt.
8The mean and mode are equal in symmetric distributions.
9The FED interest rate is used in the macroeconomic models, PATACON and 4GM, as a proxy for the relevant

foreign interest rate for Colombian.
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In the first methodology, we estimate a time-varying variance using information from external
sources (e.g., financial market projections or Bloomberg surveys) to illustrate the different levels
of uncertainty in the macroeconomic forecasts over the policy horizon. For instance, oil prices
are continuously monitored by a variety of market agents, whose projections are captured through
surveys. This information, together with the TS analysis, allows us to construct a distribution that
reflects diverse views about the future dynamics of this variable. The estimation of the time-varying
variance from these data is used to simulate the distributions of the structural shocks.

From a set of projections of an exogenous variable, for each period t = {T + 1, . . . , T + H} we
can fit a density function using a KE that captures a specific probability mass. In particular, we
estimate a density with 90% probability, compute the 5% and 95% percentiles, and extract the
implied volatility for each time t.

Estimated Shocks within Models

In the second approach, we caculate the time-varying variance from time series of shocks esti-
mated with the PATACON and 4GM models, using Kalman filtering. These estimates are based on
the structure of each model and the observed variables (Durbin & Koopman, 2012). The variance
of these shocks could be conditioned on specific spans of time, in order to reflect the uncertainty of
past periods as a proxy for the risk of future events with similar characteristics.

Figure 3: Demand Shock
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For example, Figure 3 presents the estimated demand shocks between 2006 and 2018 with the
4GM. These shocks capture exogenous changes in aggregate demand that are not explained by the
dynamics of the output gap, its determinants and other exogenous factors within the model. This
figure illustrates a strong negative shock (red line) in late 2008, which characterizes the downward
demand pressures associated with the global financial crisis. The variance of these innovations in this
particular time period could be used to simulate shocks, whose probability distribution represents a
high level of risk associated with future episodes of economic crises or turbulent financial markets.

Markov Switching Model

We consider a third methodology that uses a Markov Switching (MS) model to capture different
regimes for the variance of innovations. These regimes are implicit in historical data and reveal
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different levels of risk over time as a result of particular events.

Specifically, we adopt a two-regime MS model (Hamilton, 1994, 2005; Perlin, 2015), given by

yt = µ+ εSt , εSt ∼ N(0, σ2
St

) for St = [Low,High] (5)

where yt is the explained variable, µ is the long-run mean, εSt is a shock following a normal dis-
tribution with zero mean and variance σ2

St
. Over time, volatility moves between regimes St with

transition probability matrix P (St+1|St) =

[
p11 p12

p21 p22

]
, where pii (pij) is the probability that σ2

stays in (moves to) regime i (j) at time t+ 1 given that the current regime is i at time t.

For each forecast period, h, we apply the MS model on historical forecast error data to estimate
two regimes, low and high volatility, as well as their expected duration. In addition, these estimates
are used to derive a conditional regime, which is an average of the low and high volatility states
weighted by the elapsed time in each. The estimated volatility regimes are used to simulate a
probability distribution of shocks that illustrates the qualitative assessment of risks over the forecast
horizon. Algorithm 2 describes the steps to implement this empirical strategy.

Algorithm 2 Simulation of a Distribution of Shocks based on the MS Model

For each step h = {1, ...,H}:

1. Build a time series yht , with the h-periods-ahead absolute forecasting errors for variable yt.
2. Estimate the MS model stated by Eq.(5) on data yht , obtain µ, σ2

St
, and P (St+1|St) for

S = [Low,High], and compute the variance for a conditional regime σ2
S̄t

. The latter is a

weighted average of σ2
St

for S = [Low,High] according to the time spent on each state.

3. Simulate the probability distribution of shocks linked to yht with the variances σ2
S̄t

for high,
low and conditional regimes, reflecting the future risk factors assessed by the TS.

For example, we use the MS model to characterize the variance of the food-basket Phillips
curve shocks. The historical volatility of these innovations is high, and has changed over time as a
consequence of, for example, the dynamics of international food prices and climatic factors such as
El Niño phenomenon, among other risks. In this sense, we make considerations on these factors and
their uncertainty over the policy horizon as these elements are important to simulate the probability
distribution of shocks on the Phillips curve of this basket.

We apply the Algorithm 2 to the forecast errors of the food-basket inflation rate. Figure 4
illustrates the standard deviation estimated with the MS model for each forecasting step, h, and
the low- (black line), conditional- (green line) and high-volatility (red line) regimes. The risk levels
in the conditional- and low-state are similar, suggesting that periods of high volatility, associated
with the El Niño, are less frequent and of relatively short duration.

As an example, Figure 5 shows, for the forecast period between the second quarter of 2018 and
the first quarter of 2020, the PD for the food-basket inflation rate calculated using the probability
distribution of the simulated shocks with the estimated variances for the low- (Panel A), conditional-
(Panel B) and high- (Panel C) regimes.
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Figure 4: Food-basket Inflation Shocks: Estimated Volatility
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Figure 5: PD on the Food-basket Inflation Rate for Different Volatility Regimes
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Note: In this example, the mode corresponds to the observed value of the variable. The shaded areas show the
30%, 60%, and 90% of probability around the mode of the distribution (i.e., the central forecast path).
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3.3 Skewness

So far we have relied on the assumption that the shocks εT+1:T+H follow a normal distribution that
is symmetric around the mode ηT+1:T+H . By relaxing this assumption, we consider asymmetric
distributions of innovations to reflect a skewed balance of risks (Britton et al., 1998). This approach
draws the innovations εT+1:T+H from an asymmetric distribution keeping the mode of the distribu-
tion of ηT+1:T+H conditioned on specific values, for instance, the central forecast performed by the
TS.

To draw the innovations ε∆T+1:T+H from a skewed probability distribution, we assume that

shocks follow a triangular distribution ∆(η∆
T+1:T+H , ε

∆,L
T+1:T+H , ε

∆,U
T+1:T+H) with mode η∆

T+1:T+H ,

lower bound ε∆,LT+1:T+H , and upper bound ε∆,UT+1:T+H .10 This distribution allows the researcher to
provide information about the most likely, pessimistic and optimistic outcomes based on previous
experience or knowledge of the underlying process. Algorithm 3 introduces the steps for simulating
shocks that follow a skewed probability distribution.

Figure 6 compares a normal distributionN(µ, σ2) with a triangular distribution ∆(η∆, ε∆,L, ε∆,U )
with positive skewness. The latter is simulated using Algorithm 3. The mode and lower bound are
equal in both distributions (η = η∆) and (εL = ε∆,L). The upper bound will be higher in the
triangular distribution (ε∆,U > εU ), so the probability of observing an innovation above the mode
is higher.11

Algorithm 3 Simulation of a Skewed Probability Distribution of Shocks

For each shock εt considered over the forecasting horizon (e.g. demand shocks, oil price shocks):

1. Generate a sequence of M innovations εT+1:T+H ∼ N(µT+1:T+H ,ΣeT+1:T+H ), µ ∈ R, such that
µT+1:T+H = ηT+1:T+H guarantees that YT+1:T+H = ZT+1:T+H

2. For each step h = {1, . . . ,H}, approximate a density function on the set of M simulated draws
εT+1:T+H , and compute percentiles at 1% and 99% as lower and upper bounds, respectively.

3. Consider a neutral, negative or positive skewness on εT+1:T+H from the qualitative analysis
of risks, and calibrate a skewness multiplier (ψT+1:T+H > 1), using historical variance ratios
between a high- and low-volatile periods (see Section 3.2).

4. Set the lower and upper bounds [ε∆,LT+1:T+H , ε
∆,U
T+1:T+H ] = [βLT+1:T+H ∗ εLT+1:T+H , β

U
T+1:T+H ∗

εUT+1:T+H ] on the triangular distribution so that βLT+1:T+H = ψT+1:T+H (βUT+1:T+H =
ψT+1:T+H) if skewness is negative (positive) and βLT+1:T+H = 1 (βUT+1:T+H = 1) otherwise.

5. Generate a sequence of innovations from a triangular distribution
∆(η∆

T+1:T+H , ε
∆,L
T+1:T+H , ε

∆,U
T+1:T+H) with mode η∆

T+1:T+H , lower bound ε∆,LT+1:T+H , and

upper bound ε∆,UT+1:T+H .

Prospective analysis of skewed risks, in most cases, comes from the assessment of current and
past episodes. For example, lockdowns and other social isolation measures to dela with the Covid-
19 pandemic had adverse effects on economic activity in 2020, and implied foreseeing negatively

10The triangular distribution has been used previously in the literature on risk analysis and uncertainty problems
(Johnson, 1997).

11εL and εU correspond to percentiles at 1% and 99% of the normal distribution, respectively.
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skewed demand shocks over the policy horizon to reflect a higher probability of GDP growth and
output gap projections below the central forecast path.

Figure 6: Simulation of the Distribution of Shocks

A) Normal B) Triangular

Figure 7: PD on the Food-basket Inflation Rate for Different Skews
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Note: In this example, the mode corresponds to the observed value of the variable. The shaded areas show to the
30%, 60%, and 90% probability around the mode of the distribution (i.e. the central forecast path).
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Another example is the assessment of climatic factors. For instance, previous episodes of El
Niño had led to a rapid increase in inflation through the food basket. To reflect this risk factor,
we would have to consider shocks to the food-basket Phillips curve drawn from a positively skewed
probability distribution.

Figure 7 illustrates, as an example, the PD of the food-basket inflation rate we generate with
cost shocks on this basket for the horizon period between the second quarter of 2018 and the first
quarter of 2020. We assume a triangular probability distribution with neutral (Panel A), negative
(Panel B) and positive (Panel C) skewness, respectively.

4 Unified PD

Once the central macroeconomic projection is defined, we initiate a new iterative process to generate
PDs, resulting in a distribution that assigns probabilities to the forecasts of each variable. This
procedure was illustrated in both Algorithm 1 and Figure 1.

The process begins with the presentation of the factors that could affect the future state of the
economy, and their analysis within the TS. These prospective factors of risk are represented through
the probability distributions of the structural shocks and considerations about their mode, variance
and skewness, as described in Section 3. From these distributions, we randomly draw M sequences
of innovations εT+1:T+H that feed the system of equations (1) - (2) to simulate M forecast paths
for all latent state variables ST+1:T+H , and measurement variables YT+1:T+H .

From the above results, we use a KE to approximate a probability density function over the set
of M projections of every variable for both PATACON and 4GM. We then generate a unified PD
that combines the probability distributions of the forecasts from both models. We build this density
from the weighted average of each model’s forecasts using weights wi = 0.5.12

Under this framework, for each variable and horizon h = {1, . . . ,H}, we calculate the average
across sequences ordered in ascending order, of the forecasts from both models. Finally, we estimate
the PD by applying the KE to this set of weighted forecasts. With this methodology, the mode of
the unified density corresponds to the average of the modes of the PATACON and 4GM forecast
densities, which facilitates the communication of the results.

We give equal weight to each model avoiding arbitrary bias towards either model. The literature
has found that a forecast combination that assigns equal weights to its components often outperforms
the predictive ability of more sophisticated combinations.13

Figure 8 shows an example of the PD over the 8-quarter ahead projections of food-basket inflation
rate for the 4GM (Panel A) and PATACON (Panel B) models, as well as the unified density (Panel
C). In this example, we use the unconditional forecast path of each model as the mode of the PDs.

There are other methodologies for combining PDs. For example, the linear pooling approach,
which directly calculates a weighted average of the densities of each model as Pc (YT+1|Y1:T ) =∑m

i=1wiPi (YT+1|Y1:T ), and
∑m

i=1wi = 1, where Pi (YT+1|Y1:T ) represents the forecast distributions
for PATACON and 4GM.14 Another example is the dynamic linear pooling technique, which allows

12The averaging of the data is briefly discussed in Hill & Miller (2011)
13This empirical fact is known in the literature as the forecast combination puzzle. Graefe et al. (2014) summarize

the history of this puzzle, while Claeskens et al. (2016) propose a theoretical explanation to its occurrence.
14A taxonomy of solutions to the problem of combining distributions can be found in Genest & Zidek (1986). Linear

pooling was proposed by Stone (1961) and was attributed to Laplace by Bacharach (1979).
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the calculation of optimal weights based on the historical predictive performance of each model,
once a sufficient pool of forecasts is available (Del Negro et al., 2016).

Figure 8: PD on the Food-basket Inflation

A) 4GM B) PATACON
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Note: The mode corresponds to the unconditioned forecast path in each model. The shaded areas correspond to
the 30%, 60%, and 90% probability around the mode of the distribution (i.e. the central forecast path).

Conclusions

Since July 2021, BanRep implemented the PD approach in its forecasting process, using the projec-
tions generated by its two general equilibrium models, PATACON and 4GM. The PDs from both
models are combined to obtain a unified probability distribution of the macroeconomic forecasts, for
each variable considered. The PD reflects the probability assigned to the possible future realizations
of a variable conditional on the observed data.

The PD technique provides a suitable technique for characterizing and communicating the quali-
tative assessment of factors that could affect the economy in the future and thus the macroeconomic
forecasts. This approach illustrates the sensitivity of macroeconomic forecasts to risk factors, quan-
tifies their importance in probabilistic terms and helps to delineate a more robust monetary policy
recommendation in uncertain environments.

The PD approach provides a flexible method to characterize the balance of risks through prob-
ability distributions of shocks and technical considerations on their mode, variance and skewness.
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Unlike other methodologies, the PD technique considers the economic structure of macroeco-
nomic models to approximate, by simulation, a joint probability distribution over the forecasts of
all variables, ensuring that projections preserve general equilibrium relationships and thus their
macroeconomic consistency.
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