The Dominant Currency Financing Channel of External Adjustment

By: Camila Casas
Sergii Meleshchuk
Yannick Timmer

Borradores de ECONOMÍA

No. 1111
2020
The Dominant Currency Financing Channel of External Adjustment*

Camila Casas
Banco de la República
mcasaslo@banrep.gov.co

Sergii Meleshchuk
International Monetary Fund
smeleshchuk@imf.org

Yannick Timmer
International Monetary Fund
ytimmer@imf.org

The views expressed in the paper are those of the authors and do not necessarily represent those of Banco de la República, its Board of Directors, the International Monetary Fund, its Executive Board or IMF management.

Abstract

We provide evidence on a new transmission channel of exchange rate movements to net exports. Using a novel identification strategy by exploiting firms’ foreign currency debt and debt maturity structure in Colombia, we analyze the trade response of firms that are financially more exposed to a depreciation through a debt revaluation channel. We show that while exports are unaffected by the debt revaluation, imports contract more sharply for firms with larger financial exposure to the depreciation. However, the import response is exclusively driven by firms that import but do not export. The results can be rationalized by a model where exporters are shielded from debt revaluation as they have revenues in foreign currency. We conclude that dominant currency financing strengthens the expansionary impact of a depreciation on the trade balance.

JEL Codes: F31, F32, F41, G32

Keywords: Imports, Exports, Exchange Rates, Foreign Currency Exposure, Capital Structure, Debt Revaluation

*We are thankful to Gustavo Adler, Gita Gopinath, Sebnem Kalemli-Ozcan, Maria Soledad Martinez Peria, Carolina Osorio-Buitron, and Tim Schmidt-Eisenlohr for comments.
El canal financiero de la moneda dominante en el ajuste del sector externo

Camila Casas
Banco de la República
mcasaslo@banrep.gov.co

Sergii Meleshchuk
Fondo Monetario Internacional
smeleshchuk@imf.org

Yannick Timmer
Fondo Monetario Internacional
ytimmer@imf.org

Las opiniones expresadas en este documento son responsabilidad exclusiva de los autores y no representan la posición del Banco de la República o su Junta Directiva, ni la del Fondo Monetario Internacional, su Directorio Ejecutivo o la gerencia del FMI.

Resumen
En este documento presentamos evidencia de un nuevo mecanismo de transmisión de movimientos de la tasa de cambios a la balanza comercial. Utilizamos una estrategia de identificación novedosa que aprovecha las diferencias en la deuda en moneda extranjera de las firmas colombianas y en las fechas de vencimiento de estos créditos para analizar los cambios en las exportaciones y las importaciones de las firmas con diferentes niveles de exposición financiera a una depreciación de la moneda a través de la revaluación de su deuda. Demostramos que una revaluación de la deuda no tiene efecto sobre las exportaciones, pero la contracción de las importaciones es más fuerte para aquellas firmas que están más expuestas financieramente a una depreciación. Sin embargo, la respuesta de las importaciones se explica únicamente por firmas importadoras que no exportan. Estos resultados se pueden racionalizar con un modelo en el que los exportadores están protegidos de revaluaciones de la deuda a través de ingresos en moneda extranjera. Concluimos que la financiación de las firmas en una moneda dominante refuerza el efecto expansivo de una depreciación en la balanza comercial.

Códigos JEL: F31, F32, F41, G32

Palabras clave: importaciones, exportaciones, tasa de cambio, descalces cambiarios, estructura del capital, revaluación de la deuda.
1 Introduction

The effect of exchange rate movements on trade has been one of the most discussed topics in international economics. In traditional models, a depreciation of the home currency causes firms’ exports to expand and imports to shrink due to changes in relative prices (Mundell, 1963; Fleming, 1962; Obstfeld and Rogoff, 1995). Standard models, however, do not take into account that a depreciation of the domestic currency can tighten financial constraints of firms that have debt denominated in foreign currency, thus affecting trade balance through a different channel.

If firms borrow in foreign currency, a depreciation of the domestic currency increases the debt burden of those firms and tightens their financial constraints, with potentially contractionary effects on both exports and imports. Depending on the relative elasticity of exports and imports, the effect of foreign currency borrowing on the trade balance is ambiguous.

To shed light on this channel we construct a unique comprehensive dataset covering Colombian firms, merging highly disaggregated firm-level trade, loan and balance sheet data. We then study the trade response to a sharp and unexpected depreciation of the Colombian peso depending on firms’ financial heterogeneity in terms of foreign currency borrowing. The Colombian peso depreciated between 2014 and 2015 due to a large drop in oil prices. As the shock can be seen as an exogenous event to firms in non-commodity sectors, it provides an ideal laboratory to study how differences in foreign currency debt affect non-commodity firms’ imports and exports in response to a depreciation.

Using a novel identification strategy that exploits the foreign currency debt maturity structure of firms we study the effect of dominant currency financing on external adjustment. The detailed loan-level data allows us to compute the increase in debt repayments due to the interaction between currency movements and the foreign currency debt maturity structure. Firms that happen to have foreign currency debt maturing at the height of the depreciation faced a large increase in their debt repayments. In contrast, for firms whose foreign currency debt matured predominantly just before the depreciation, their debt repayments remained almost unaffected. As the maturity structure can be seen as exogenous to exchange rate movements, the effect of dominant currency financing on trade can likely be interpreted as causal.

Firms with larger financial exposure to the exchange rate depreciation do not seem to reduce their exports more relative to less exposed firms. In contrast, dominant currency financing strongly amplifies the negative effect of the depreciation on imports. Firms with larger financial exposure to the depreciation reduced their imports significantly and persistently more compared to less exposed firms. The difference in imports between firms with a large exposure to the depreciation strengthens over time and remains statistically significant even three years after the start of the depreciation. Moreover, when the sample is split by firms that import and solely sell domestically and firms that import and export, we find
that non-exporters are solely responsible for the additional decline in imports due to dominant currency financing. Firms that import and export do not significantly reduce their imports as they are hedged, at least partially, through their US dollar revenues.

We decompose firms financial exposure to the exchange rate depreciation into a wealth and a liquidity shock. Foreign currency leverage exposes firms to the depreciation in two ways. First, firms that have foreign currency debt maturing during the depreciation face a sudden increase in their debt repayments, forcing expenditure compression (i.e. a liquidity shock). Second, even if firms have no foreign currency debt maturing during the depreciation period, their debt burden increases due to the depreciation, unless the depreciation reverses. We call the sum of the liquidity shock and the increase in the debt burden due to later debt repayments a wealth shock.

Qualitatively, the effects of foreign currency leverage, the wealth and the liquidity shocks are the same. Quantitatively, we estimate that a one standard deviation increase in a firm's foreign leverage ratio is associated with an additional decrease of 10.6% in imports after the depreciation. While a one standard deviation larger liquidity shock leads to a 4.7% larger decline in imports, a one standard deviation larger wealth shock is associated with a 5.9% larger decline in imports. As the wealth shock is computed as the sum of the liquidity shock and the debt revaluation not affecting debt repayments during the depreciation, the difference in the coefficient between the wealth and the liquidity shock can be interpreted as the effect of the debt revaluation. Hence, the liquidity shock explains 80% of the wealth shock while the debt revaluation only explains 20%.

To quantify the magnitude of the effects, we conduct a simple back-of-the-envelope calculation and estimate the share of total decline in imports attributed to corporate dollarization. Colombia’s exports and imports dropped sharply around the depreciation of the Colombian peso. Imports dropped by 6 billion USD and exports dropped by 4 billion USD We multiply the coefficient of our preferred specification with each firms’ actual exposure and aggregate up. Our estimates imply that the dominant currency financing channel of external adjustment explains around 17%, or 1 billion of the drop in imports but does not explain the drop in exports.

These findings can be rationalized under a model with Dominant Currency Financing (DCF) under Dominant Currency Pricing (DCP). Under dominant currency pricing both imports and exports are invoiced in the dominant currency (Gopinath et al., 2019). Under DCP, when the domestic currency depreciates against the dominant currency imports drop but exports remain relatively stable. Under DCF, firms do not only price their trade in dominant currency but also finance their trade in dominant cur-

1This number should be taken with caution as it ignores general equilibrium effects. However, we believe that this counterfactual exercise serves as a useful lower bound benchmark to understand the macroeconomic relevance of our channel as general equilibrium effect would likely strengthen the impact.
Adding DCF to DCP amplifies the effect of the depreciation on the trade balance. Exporting firms are naturally hedged through their exporting revenues in dominant currency. However, importing firms’ financial constraints tighten as their debt repayments increase while neither their assets appreciate nor their revenues in domestic revenue increase. As imports are financed in the dominant currency and firms become financially constrained, they reduce their borrowing in dominant currency and reduce imports.

We provide more evidence supporting this channel. First, we show that firms with larger financial exposure to the depreciation, especially those who do not export, reduce their foreign currency borrowing more relative to other firms. Second, in order to confirm that our results are indeed driven by the increase in the debt due to the depreciation and not more generally due to the macroeconomic environment, we conduct a placebo test where we replace the foreign currency with domestic currency debt measures. In these falsification tests we do not find that financial heterogeneity in terms of domestic debt affected the import performance in response to the depreciation. Third, our results are not specific to the large depreciation that occurred in Colombia in 2014. In addition to employing an event study methodology around the large depreciation, we confirm our main results by estimating panel regression of imports and exports on the interaction between foreign currency leverage and change in the exchange rate.

While this paper focuses on one specific country which can be seen as the typical emerging market under DCP, several general implications can be drawn from our analysis. First, under producer currency pricing (PCP) where exports are priced in domestic currency and imports are priced and financed in foreign currency, exporters would not be hedged when the domestic currency depreciates. This would amplify the effect on imports but could potentially also have adverse effects on exports. Second, the composition of non-exporting relative to exporting importers is crucial to understand the magnitude of the effect of dominant currency financing on external adjustment. In countries where the vast majority of firms are importers that do not export (e.g. countries with large wholesale or service sectors), the effect of dominant currency financing is likely to be larger than for countries with large manufacturing sectors that both import and export.

Overall, these results imply that dominant currency financing has a contractionary impact on trade, but as the effect is only apparent for imports and not for exports, the effect on the trade balance is expansionary.

Related Literature

Our paper relates to the literature on the effect of exchange rate movements on the external adjustment. Recent work questions the conventional wisdom of both Producer Currency Pricing and Local Currency Pricing and shows that trade is mostly invoiced in a few vehicle currencies, and that the dollar plays a

\(^2\) Gopinath and Stein (2018) rationalize the dominance of the dollar in the financial markets when trade is invoiced in dollar.
dominant role among them (Goldberg and Tille, 2008; Gopinath, 2015).\footnote{The adjustment process of traded quantities depends on the currency in which prices are set. Under producer currency pricing (PCP), the law of one price holds and a nominal depreciation (all else equal) increases the domestic price of imports and reduces the price of exports in the destination markets. Hence, it leads to an improvement of the trade balance. However, there is evidence that the law of one price fails to hold (Obstfeld and Rogoff, 2000). As an alternative Betts and Devereux (2000) and Devereux and Engel (2003) proposed that prices are instead sticky in the currency of the buyer (local currency pricing, LCP). Under LCP a nominal depreciation has no effect on the price of traded goods in the destination markets. Therefore, although it worsens the competitiveness, it has a muted effect on the trade balance. See Lane (2001) for a survey.}

Gopinath et al. (2019) show that trade in Colombia is almost exclusively invoiced in USD and therefore can be seen as a perfect laboratory to study the effects Dominant Currency Pricing (DCP). Under DCP prices are set in a dominant currency regardless of the origin or destination of trade flows, and a nominal depreciation leads to an increase in import prices, as under PCP, but prices faced by trading partners are not changed. Hence, the expenditure switching effect is milder than under PCP because the depreciation affects net exports only through a contraction on imports while it has a muted effect on exports. Following Gopinath et al. (2019) we use Colombia as a laboratory to study Dominant Currency Financing (DCF) under Dominant Currency Pricing (DCP). Compared to Gopinath et al. (2019) we empirically show that when firms not only price imports and exports in US Dollar but also borrow in foreign currency, the contractionary impact of exchange rate movements on imports is even stronger while exports are not affected.

We also contribute to the large empirical literature on the negative effects of foreign currency borrowing. Several studies have found negative effects of foreign currency borrowing of firms on investment when the domestic currency depreciates (Aguiar, 2005; Kalemli-Ozcan et al., 2016; Hardy, 2018). Other studies have not been able to confirm these results and find no effect on investment (Bleakley and Cowan, 2008).\footnote{See Galindo et al. (2003) for a survey. See Barajas et al. (2017), Restrepo et al. (2014) and Echeverry et al. (2003) for the case of Colombia.} Niepmann and Schmidt-Eisenlohr (2017a) show that firms with more foreign currency loans are more likely to default. Verner and Gyongyosi (2018) find negative consequences in response to household foreign currency borrowing after a depreciation.\footnote{For the theoretical dimension see for example Céspedes et al. (2004), Krugman (1999) or Devereux et al. (2006).} While all of these papers study the real effects of foreign currency borrowing, they entirely ignore their external adjustment effects. Studying the response of imports and exports jointly is crucial to understand the external adjustment process of a country in response to currency movements.

Most closely we relate to the literature on the trade effects of financial shocks. Amiti and Weinstein (2011) and Niepmann and Schmidt-Eisenlohr (2017c) provide evidence in favor of contractionary export effects of trade finance shocks.\footnote{See Niepmann and Schmidt-Eisenlohr (2017b); Love et al. (2007); Schmidt-Eisenlohr (2013) for more details on trade finance shocks.} Paravisini et al. (2014) and Bruno and Shin (2019) show that firms' exposed to bank credit shocks reduced their exports. We differ relative to this literature in two dimensions. First, all papers focus solely on the export response of a tightening in financial constraints while...
we study imports and exports jointly. Second, none of these papers study shocks affecting firms directly through their borrowing in foreign currency. Our results show that currency-related shocks that increase firms’ debt through the depreciation of the currency do not have export effects and are therefore very different from shocks that propagate through banks.

On the theoretical front, our work is most closely related to Akinci and Queralto (2018) and Kohn et al. (2020). Akinci and Queralto (2018) show that foreign currency borrowing induces imports to drop more but exports to drop less in response to a tightening of US monetary policy. Kohn et al. (2020) more explicitly model a large devaluation and confirm that financial frictions do not contribute largely to export dynamics.

The rest of the paper is structured as follows. In section 2 we describe the data and the construction of the variables. In section 3 we discuss the empirical specification. section 4 presents the results. In section 5 we conclude.

2 Data

2.1 Sources

We compiled data from several sources.

Commercial loans granted by Colombian banks and other financial institutions to firms come from the credit registry from Superintendencia Financiera, the agency in charge of supervising the financial sector. Every quarter Colombian banks report the amount outstanding and maturity date for each loan they issue to firms. Importantly, the amounts are allocated between loans in foreign and domestic currencies. Using firm tax ID, we construct the amount of outstanding loans in foreign and domestic currencies for each firm and quarter. These data are available between 2005 and 2017. Since this dataset covers the universe of loans, we replace missing amounts with zeros when matching with other datasets.

The trade data come from DANE, the Colombian statistical agency. This dataset contains information on imports and exports at a very disaggregated level (by firm, country of origin/destination, product, and month of the year). Public data is available for 2008-2018. We construct total imports and exports by each firm and quarter and replace missing amounts with zeros when matching with other datasets since this dataset also covers a universe of trade transactions for the period of interest.

Balance sheet data comes from the Orbis global database. Originally, the data come from Colombian chambers of commerce and has standard variables from the balance sheets and income statements of Colombian firms (e.g. assets, liabilities, sales). We have data for 2004-2018.

7 By Colombian banks we mean banks operating in Colombia, regardless of nationality of ownership.
8 The Orbis global database is provided by Bureau van Dijk, a Moody’s Analytics company.
2.2 Measures of exposure and shocks

In this section we describe the measures of foreign currency exposure that we construct by merging the balance sheet and loans data. As foreign currency liabilities are the main driver of foreign currency mismatches on Colombian firms’ balance sheets, we focus on foreign currency loans to construct our measures of exposure.\footnote{Using data on assets and derivatives for a set of Colombian firms, Barajas et al. (2017) show that Colombian firms in general do not hold assets in foreign currencies, and for those who do the value of assets is relatively small with respect to their foreign currency liabilities. Restrepo et al. (2014) show that currency mismatches have increased over time as firms do not adjust the composition of their assets or revenue to match the increase of liabilities in foreign currency, and firms that are not naturally hedged do not use derivatives to hedge financially. Hau et al. (2019) show that hedging exchange rate risk comes with nontrivial costs for non-financial firms.}

In subsection 3.1 we outline the framework for the regression analysis.

We construct several measures of firm-level exposure to the exchange rate shock through their indebtedness in US dollars. First, we construct a measure of foreign currency leverage, which is given by total loans in foreign currency divided by firm-level assets:

\[
FCL_{ft} = \frac{\sum_{i \in \Lambda_{ft}^F} L_i}{A_{ft}}
\]

(1)

where \(\Lambda_{ft}^F\) is the set of firm's \(f\) loans with Colombian banks denominated in foreign currency in period \(t\), \(L_i\) is the outstanding amount of the loans, and \(A_{ft}\) is the book value of assets of firm \(f\) at time \(t\). This measure reflects the importance of foreign currency debt relative to total assets of the firm. However, it does not distinguish between the loans of different maturity. We observe firms having foreign currency loans with quite heterogeneous future maturity dates in the data. We can leverage this information to study whether firms with debt that is disproportionately due over shorter horizons were relatively more affected due to the liquidity shock that they face due to much higher than anticipated debt service payments in the near run in comparison to firms with longer debt maturity, who face a wealth shock.\footnote{This identification strategy bears similarities with Duval et al. (2020) who exploit firms’ debt maturity structure before the financial crisis.} In addition, firms having different maturity dates face different shocks due to the difference in the peso exchange rate between those dates. To draw the distinction between the measures of liquidity vis-a-vis the wealth shock and to take into account depreciation of Colombian currency over time, we use information about the maturity date of each loan reported by Colombian banks and construct the following following variables:

\[
LS_{ft,t'} = \frac{\sum_{i \in \Lambda_{ft}^F} 1_{T(i) \leq t'} L_i \Delta e_{t,T(i)}}{A_{ft}}
\]

(2)

\[
WS_{ft,t'} = \frac{\sum_{i \in \Lambda_{ft}^F} 1_{T(i) > t'} L_i \Delta e_{t,t'} + \sum_{i \in \Lambda_{ft}^F} 1_{T(i) \leq t'} L_i \Delta e_{t,T(i)}}{A_{ft}}
\]

(3)
where \(T(i) \) is the maturity day of loan \(i \), \(\Delta e_{t,T(i)} \) is the depreciation of peso between \(t \) and \(T(i) \), \(1_{T(i) \leq t'} \) is an indicator that is equal to 1 if the loan is maturing before \(t' \) and zero otherwise, and \(1_{T(i) > t'} \) is an indicator that is equal to 1 if the loan matures after \(t' \). The first measure, \(LS \) (‘liquidity shock’), measures by how much the value of the debt repayments as of \(t \) increases due to depreciation between times \(t \) and \(t' \) given the actual depreciation as of their maturity date that falls between \(t \) and \(t' \). The second measure, \(WS \) (‘wealth shock’), adds the increase in debt that matures past \(t' \) using the exchange rate in \(t' \). In our baseline empirical strategy we set \(t \) to 2014 Q1, as the depreciation started in 2014 Q3 (see Figure 1). This allows us to capture firms’ debt that matures right before and right after the depreciation. \(t' \) is set to 2015 Q3, as it captured the height of the sudden depreciation. 11

2.3 Descriptive statistics

Figure 1 plots imports, exports and the Colombian Peso between 2008 and 2018. The Colombian peso officially switched to a floating status in 1999. Since then, the peso can be considered a commodity currency, as fluctuations in the peso are strongly correlated with fluctuations in commodity prices. Moreover, commodity price fluctuations are exogenous to the economy; while mining products (mainly oil, coal and nickel alloys) represent a large share of total exports, output is small relative to world markets. For example, in 2014 Colombia’s oil production was 1.1% of world oil production but oil and oil products accounted for 52.8% of Colombian exports. Hence, the exchange rate depends heavily on oil prices but Colombia acts as a price taker in the oil world market.

In 2014, the price of oil plummeted. The spot price of WTI oil halved from over $100 per barrel in July 2014, to $53.45 by the end of the year and reached its lowest value, less than $30, in January and February 2016. The peso/dollar exchange rate increased from roughly COP$1850 at the end of July 2014 to COP$3435 by mid-February 2016. Importantly, the peso depreciation was not the result of a macroeconomic crisis. According to the World Bank’s WDI, annual GDP growth in 2014-16 was 4.7%, 3% and 2.1%, lower than during the boom of commodity prices but well above the region’s average, unemployment reached its 10-year minimum, and indicators of the financial system health such as the rate of capital to assets and the rate of liquid reserves to assets remained relatively unchanged.

The depreciation of the exchange rate coincided with a drop in both exports and imports of Colombian firms. Between 2012 and 2014 imports and exports were remarkably stable. Colombian quarterly exports and imports equaled roughly 14 billion US Dollars, around 39% of GDP. With the depreciation, trade dropped. While imports dropped from 16 billion USD to around 10 billion USD between 2014 and 2018, exports dropped from 14 billion USD to 6 billion USD in 2016 but then recovering back to 10 billion USD

11 Results are not sensitive to the choice of \(t \) and \(t' \).
in 2018.12

Table 1 shows summary statistics of firms in terms of their assets, exports and imports.13 We split between non-exporters, exporters and all firms. There are 14,618 firms in our sample which do not export but import, and 7,232 export and import. The average size of a firm in our dataset is 12 million USD. Average firm-level exports before the depreciation are 127,000 USD but drop to 108,000 USD after the depreciation. Firm-level imports drop from 132,000 USD to 118,000 USD between before and after the depreciation.

The measures of exposure to depreciation due to indebtedness in dollars are computed as of the end of the first quarter of 2014, as described in subsection 2.2 Table 2 shows that foreign currency leverage is 4.4% for the average firm ranging between 0.2% to 11.6% between the 10th and 90th percentile. The average liquidity shock is close to zero as there are many firms that have short-dated liabilities that mature before the depreciation started. A firm at the 10th percentile of the liquidity shock distribution even faces a negative liquidity shock. A negative shock reflects a decrease in the debt repayments due to the small appreciation before the large depreciation. A firm at the 90th percentile of the liquidity shock sees an increase of their debt repayments purely due to the depreciation that is 0.6% of total assets.

The wealth shock, which equals the liquidity shock plus the debt revaluation after 2015 Q3 equals 0.8% of total assets. Even for the wealth shock we see some firms with negative values, which benefit from the exchange rate movements before the depreciation started. For the comparison purposes, all measures of foreign currency exposure entering the regressions were standardized to be mean-zero and have a unit standard deviation.

3 Empirical Strategy

3.1 Baseline specification

We use the unanticipated depreciation of the Colombian peso in 2014Q3 as a natural experiment to study the dominant currency financing channel of a foreign exchange rate depreciation on trade. For our baseline specification we estimate the equation of the form:

$$\ln(1 + Y_{ft}) = \beta \times FCE_f \times 1(t \geq t_0) + controls_{ft} + \epsilon_{ft},$$ \hspace{1cm} (4)
where \(Y \) is either the firm-level exports or imports of firm \(f \) at time \(t \). \(FCE_f \) is either \(FCL_{f,t} \) in \(t = 2014Q1 \), \(LS_{f,t,t'} \) with \(t = 2014Q1 \) and \(t' = 2015Q3 \), or \(WS_{f,t,t'} \) with \(t = 2014Q1 \) and \(t' = 2015Q3 \). \(1(t \geq t_0) \) is a dummy that equals one in any quarter during or after the depreciation \((t \geq 2014Q3)\). Standard errors are clustered at the firm level. The set of controls is given by firm and time fixed effects, hence we interpret the \(\beta \) coefficient as a differential effect of the financial exposure to exchange rate shocks on imports or exports, with time fixed effects absorbing the level effect on imports (exports) of all firms. The firm fixed effects control for the time-invariant characteristics of the firm, for example, the average reliance on imported inputs, size, etc.

It is worth mentioning that dominant currency financing is a choice for firms—that is, firms’ foreign currency debt and its maturity structure can respond to their expectations regarding exchange rate movements. Although these shocks are notoriously hard to predict, this potential endogeneity could bias our results. We address this concern by studying the specific case of an unanticipated, sudden depreciation that was unrelated to the economic situation in Colombia. Given the nature of this shock, it is unlikely that firms scheduled their debt in anticipation to the depreciation.

3.2 Dynamic response

Equation 4 estimates the average effect of an additional unit of foreign currency exposure on firm-level imports after the depreciation. However, one might expect the effect to build up and/or decline over time. Hence, in our second set of empirical exercises, instead of interacting the measure of dominant currency financing with a post-depreciation dummy, we interact the measure with a dummy for each quarter:

\[
\ln(1 + Y_{ft}) = \sum_{t'} \beta_{t'} \times FCE_f \times 1(t = t') + controls_{ft} + \epsilon_{ft},
\]

where \(Y \) is either the firm-level exports or imports of firm \(f \) at time \(t \). This helps us to pin down the timing of the response of exports and imports in response to the interaction between the depreciation and the firms’ debt dollarization. In addition, we examine the trade activities of firms as a function of their debt dollarization just before the depreciation. This pre-trend analysis helps us to shed light on the question whether firms with more financial exposure to the exchange rate depreciation are fundamentally different from other firms. For example, if firms with more foreign currency debt before the depreciation already started reducing their imports, the interaction term in Equation 4 could just reflect a downward trend in the imports of these firms.
4 Results

4.1 Baseline Regression

Table 3 presents the results for Equation 4 for imports. Columns (1)-(3) use foreign currency leverage as the financial exposure to the exchange rate depreciation. When considering all 21,850 firms, we see a strong negative impact of the interaction between foreign currency leverage in 2014 Q1, just before the depreciation started, and the depreciation dummy. Hence, firms that had a larger share of foreign currency debt before the depreciation imported less after the depreciation than before. Quantitatively, a one standard deviation larger share of foreign currency debt\(^{14}\) is associated with a 10% stronger decline in imports. However, this effect masks large heterogeneity across different firms. Around two thirds of all firms do solely import and do not export. We show the regression for only these firms in column (2). The regression coefficient roughly doubles. For non-exporters a one standard deviation larger share of foreign currency debt is associated with a 20% stronger decline in imports. For firms that import and export, the effect is only 1.8% and not statistically significant.

Columns (4)-(9) repeat the same exercise but decomposes the increase in leverage due to the depreciation into a liquidity and a wealth shock. Columns (4)-(6) report the coefficients for the liquidity shock which captures the increase in debt repayments due to the movements in the exchange rate. The liquidity shock is defined such that the liquidity shock is positive when the firm sees an increase in their debt repayments due to the depreciation and negative if the debt repayments fall. The debt repayments can fall for the firm if it has very short-term maturity debt that matures before the depreciation happened.

The effect of the liquidity shock on imports is around one half of the foreign currency leverage. In particular, a one standard deviation larger liquidity shock leads to a decline in imports relative to the pre-depreciation period by around 5%. As for foreign leverage, the effect is solely driven by non-exporters for which the response is around 7% and statistically significant. Exporters reduce their imports by 2.5% more if they face a one standard deviation larger liquidity shock but the coefficient is not statistically significant.

Lastly, columns (7)-(9) show the average response of imports in the depreciation period as a function of a wealth shock, which combines the liquidity shock during the sharp depreciation with the shock to wealth that occurs due to debt revaluation for later periods. As above, firms that are financially more exposed to the depreciation of the exchange rate due to a wealth shock compress imports relatively more compared to other firms. This pattern is significantly stronger for firms which import and do not export, rather than firms that participate in both activities.\(^{15}\)

\(^{14}\)One standard deviation of foreign currency leverage is 3.2%

\(^{15}\)We test formally for the statistical difference between non-exporters and exporters in unreported results.
In terms of economic significance, a one standard deviation larger exposure to the exchange rate depreciation through their debt dollarization is associated with a 12% larger compression of imports if measured by the wealth shock for non-exporters. The number shrinks to around 1% for exporters and is not statistically significant.

Table 4 repeats the same exercise as Table 3 but for the drop in exports. The number of observations significantly drops as many more firms import than export. In our sample only around 7,200 firms export. The results for exports differ starkly from the results shown in Table 3. While the coefficients are mostly negative, the estimates are much smaller and not statistically significant. Neither foreign leverage nor the wealth or liquidity shock indicates that firms with larger dominant currency financing face a larger drop in exports.

This result is different from evidence in Paravisini et al. (2014) or Amiti and Weinstein (2011) who show that firms that face financial shocks reduce their exports. Why is the evidence different? Paravisini et al. (2014) and Amiti and Weinstein (2011) study shocks to banks that are unrelated to exchange rate movements to which firms are likely not hedged against. In contrast, in our case firms that have dollarized debt face a negative shock when the domestic currency depreciates, but this negative shock is offset by an increase in their export revenues as they are almost exclusively priced in USD (Gopinath et al., 2019).

4.2 Dynamics Response

In this subsection we shed light on the dynamics of the response in imports and exports over time.

As in Table 3, we split the firms into importers that do not export and firms that import and export. Figure 2 shows the evolution of imports as a function of a one standard deviation larger financial exposure to the depreciation and the Peso/US Dollar exchange rate. The behavior of imports is not statistically different between 2012 Q3 and 2014 Q2. At the same time the Peso/US Dollar exchange rate was relatively stable at around 2000 Pesos per US Dollar. The fact that imports did not behave differently as a function of dominant currency financing in the period before the depreciation serves as a useful placebo test. Once the peso starts to depreciate in 2014 Q3, firms with a larger financial exposure to the exchange rate depreciation contract their imports significantly more as the peso depreciates. The effect of dominant currency financing on imports for non-exporters cumulates over time, which stresses the importance of studying the effect in a dynamic setting that allows firms to respond with a lag. Three years after the depreciation the effect reaches a coefficient of -0.4. This coefficient implies that firms with a one standard deviation larger financial exposure to the exchange rate depreciation contract imports by 40% more relative to before the depreciation period.

Figure 3 shows the evolution of imports for exporters in response to a one standard deviation larger
dominant currency financing. The estimated coefficient is close to zero both before and after the deprecation period and is not statistically significant. This result suggests that firms that export and import were insulated from the dominant currency financing channel due to higher revenues in local currency since exports are priced in US Dollars.

Figure 4 plots the estimated coefficient for the interaction between financial exposure to the exchange rate depreciation and quarter dummies for the export response. As in the case of imports by exporters the line for exports is entirely flat. The logic is the same as for importers that export. While it may be the case that exports decline in response to a financial shock as exporters face difficulties to finance their working capital, this channel is not at work here as firms that export are hedged due to their higher domestic currency revenues given the appreciation of the US Dollar in which their exports are priced.

4.3 Quantification

This section aims to quantify the effect of dominant currency financing on the trade adjustment. Using our estimates from Table 3 we calculate the response in imports due to foreign currency borrowing. The estimated effects can be used to infer the counterfactual response of trade flows to exchange rate movements for other levels of foreign-currency financing. We show the results of our counterfactual exercise in Figure 5. In the case of Colombia, foreign-currency financing was substantial for many importing firms, even though the average level of dependence on foreign currency loans is moderate. If all firms had no foreign-currency borrowing, the peak-to-trough import contraction is estimated to have been 17% percent smaller.

4.4 Lending

In this section we reestimate Equation 4, replacing exports and imports with the amount borrowed in domestic and foreign currency. This exercise allows us to test whether firms that faced larger dominant currency financing indeed had to delever as they faced borrowing constraints. Table 5 shows that firms with larger corporate dollarization strongly contract their foreign currency borrowing. This result holds when we use either foreign currency leverage, the wealth shock or the liquidity shock as an independent variable. In contrast, local currency borrowing increases for firms with larger dominant currency financing as they seem to substitute foreign currency loans with domestic currency loans, consistent with evidence in Hardy (2018). Overall, an average firm with non-zero foreign currency borrowing, had roughly 20% of its debt denominated in foreign currency. As a result, this firm would see a 3% decline in total borrowing after the shock, taking into account foreign and domestic loans, and abstracting from the valuation effects of exchange rate movements.
4.5 Placebo

In this section we conduct a placebo exercise where we replace the foreign currency leverage with domestic currency leverage. This exercise helps us to rule out that our measures of financial exposure to the depreciation are not simply measures of financial vulnerabilities in general. If our measures captured financial constraints which are not related to foreign currency borrowing, our results would still be indicative of a financial channel of external adjustment but not a debt dollarization channel. Table 6 indeed shows that if we replace our measures of debt dollarization with domestic leverage, we do not find significant negative effects on neither imports nor exports. This evidence is strongly suggesting that foreign currency borrowing rather than domestic financial heterogeneity across firms is driving the import response.

4.6 Panel Regression

In this section we aim to generalize our results to a larger time window. While the advantage of the event-study approach is its more credible causal identification, our results may not be externally valid outside of large devaluation episodes. We use date between 2008 and 2018 to construct an annual panel dataset with log imports, log exports, foreign currency leverage and the Colombian Peso/US Dollar exchange rate. Although quarterly data is available, we move to an annual panel, as we have seen in Figure 2 that the dominant currency financing channel works with with a lag to the exchange rate movement. We regress log imports and exports on the lagged foreign currency leverage and the movement in the Peso/USD exchange rate between \(t - 2 \) and \(t - 1 \) controlling for firm and year fixed effects.

Table 7 shows the results. The first row shows that firms that had higher foreign currency leverage in the previous year export and import more in the current year in the absence of exchange rate movements. However, once we see a depreciation of the peso relative to the US Dollar, only non-exporters (column (2)) shrink their imports significantly in the following year. This is a confirmation of our baseline results shown in Table 3. As in the event-study approach, imports of firms that both export and import do not respond to the interaction between foreign currency leverage and the exchange rate. In contrast to the event-study approach, once we bundle non-exporters and exporters together we do not find a significant import response.

5 Conclusions

In this paper we have analyze the dominant currency financing channel of external adjustment. We study whether firms with more foreign currency borrowing are affected differently in terms of their trade response compared to firms that borrow mainly in domestic currency. As foreign currency borrowing is an
endogenous choice, we implement a novel identification strategy that helps us shed light on the causal impact of debt dollarization on external adjustment. We compute the increase in foreign currency debt payments that is solely due to the depreciation of the currency as firms have their debt maturing at different points in time. Firms that have the majority of their debt maturing before the start of the depreciation are not affected by the depreciation through their balance sheet. In contrast, firms which have debt repayments scheduled at the height of the depreciation face a large increase in their debt repayment. This foreign currency liquidity shock strongly predicts a contraction in imports. However, this effect is solely present for firms that do not export. Exporters do not only not shrink their imports in response to the shock, they also do not see their exports respond. We conclude that foreign currency mismatches increase the potency of the external adjustment. This channel can be seen as an unintended benefit from borrowing in foreign currency from the perspective of external adjustment, however, the sharp decline in imports can have real effects on firms who are reliant on imported capital goods or intermediate inputs.
References

Barajas, Adolfo, Sergio Restrepo, Mr Roberto Steiner, Juan Camilo Medellin, and César Pabón, *Currency Mismatches and Vulnerability to Exchange Rate Shocks: Nonfinancial Firms in Colombia*, International Monetary Fund, 2017.

Hau, Harald, Peter Hoffmann, Sam Langfield, and Yannick Timmer, Discriminatory pricing of over-the-counter derivatives, International Monetary Fund, 2019.

Table 1: Descriptive statistics, firm characteristics

<table>
<thead>
<tr>
<th></th>
<th>Non-exporters</th>
<th>Exporters</th>
<th>All firms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>sd</td>
<td>mean</td>
</tr>
<tr>
<td>Assets</td>
<td>8,810</td>
<td>154,309</td>
<td>19,655</td>
</tr>
<tr>
<td>Exports before 2014Q2</td>
<td>0</td>
<td>0</td>
<td>385</td>
</tr>
<tr>
<td>Exports after 2014Q2</td>
<td>0</td>
<td>0</td>
<td>326</td>
</tr>
<tr>
<td>Imports before 2014Q2</td>
<td>55</td>
<td>229</td>
<td>288</td>
</tr>
<tr>
<td>Imports after 2014Q2</td>
<td>48</td>
<td>219</td>
<td>260</td>
</tr>
<tr>
<td>Number of firms</td>
<td>14,618</td>
<td></td>
<td>7,232</td>
</tr>
</tbody>
</table>

Notes: All variables reported in thousands of US dollars. Assets refer to total assets of firms as reported in Orbis database at the end of 2013. Trade data is taken from DANE and is calculated at the quarterly level. The sample is limited to firms that ever reported in our data. Exporters are defined as firms that ever exported in our data.

Table 2: Descriptive statistics, independent variables

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Foreign leverage</td>
<td>4.4%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Liquidity shock</td>
<td>0.1%</td>
<td>-0.2%</td>
</tr>
<tr>
<td>Wealth shock</td>
<td>0.8%</td>
<td>-0.1%</td>
</tr>
</tbody>
</table>

Notes: See Section 2.2 for the definition of the variables. Sources: Orbis, Superintendencia Financiera.
Table 3: Imports

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(imports)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post × FCL</td>
<td>-0.106***</td>
<td>-0.215***</td>
<td>-0.018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.047)</td>
<td>(0.023)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post × LS</td>
<td>-0.046**</td>
<td>-0.069*</td>
<td>-0.024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.034)</td>
<td>(0.021)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post × WS</td>
<td>-0.059***</td>
<td>-0.120***</td>
<td>-0.009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.032)</td>
<td>(0.024)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample | All | Non-X | X | All | Non-X | X | All | Non-X | X |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Time FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>524,943</td>
<td>350,934</td>
<td>174,009</td>
<td>524,943</td>
<td>350,934</td>
<td>174,009</td>
<td>524,943</td>
<td>350,934</td>
<td>174,009</td>
</tr>
</tbody>
</table>

Notes: The table reports the estimated β coefficient from Equation 4 with \(\ln(1 + import) \) on the left-hand side at the quarterly level. Columns (1)-(3) report the estimated coefficient of the interaction of a Post with foreign currency leverage (FCL). In columns (4)-(6) and (7)-(9) Post is interacted with liquidity (LS) and wealth shocks (WS) respectively. FCL, WS, and LS were normalized to have zero mean and a standard deviation of 1. Post is defined as a binary variable equal to 1 for the period after 2014Q2. The sample is limited to the firms that ever imported. Columns (1), (4), (7) report the results for all importers, columns (2), (5), (8) report the results for non-exporters, and columns (3), (6), and (9) report the results estimated on the sample of exporters. Exporters are firms that ever exported in our data. See Section 2.2 for the definition of the independent variables. Standard errors are clustered at the firm and quarter level. ***, **, and * indicate significance at 10%, 5%, and 1% levels respectively. Sources: Orbis, Superintendencia Financiera, DANE.
Table 4: Exports

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(exports)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post × FCL</td>
<td>-0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post × LS</td>
<td>-0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post × WS</td>
<td>-0.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Time FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Notes: The table reports the estimated β coefficient from Equation 4 with ln($1 + exports$) on the left-hand side at the quarterly level. Column (1) reports the estimated coefficient of the interaction of a Post with foreign currency leverage (FCL). In columns (2) and (3) Post is interacted with liquidity (LS) and wealth shocks (WS) respectively. FCL, WS, and LS were normalized to have zero mean and a standard deviation of 1. Post is defined as a binary variable equal to 1 for the period after 2014Q2. See Section 2.2 for the definition of the independent variables. Standard errors are clustered at the firm and quarter level. ***,**, and * indicate significance at 10%, 5%, and 1% levels respectively. The sample is limited to the firms that ever exported in our data. Sources: Orbis, Superintendencia Financiera, DANE.
Table 5: Borrowing

<table>
<thead>
<tr>
<th></th>
<th>ln (FC borrowing)</th>
<th>ln (LC borrowing)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Post × FCL</td>
<td>-0.587***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.117)</td>
<td></td>
</tr>
<tr>
<td>Post × LS</td>
<td>-0.207***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td></td>
</tr>
<tr>
<td>Post × WS</td>
<td>-0.391***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.097)</td>
<td></td>
</tr>
<tr>
<td>Firm FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Time FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>524,943</td>
<td>524,943</td>
</tr>
</tbody>
</table>

Notes: The table reports the estimated β coefficient from Equation 4 with ln(1 + borrowing) on the left-hand side at the quarterly level. Columns (1)-(3) report the results for borrowing in foreign currency and columns (4)-(6) use borrowing in local currency on the left-hand side. Columns (1) and (4) report the estimated coefficient of the interaction of a Post with foreign currency leverage (FCL). In columns (2), (5) and (3), (6) Post is interacted with liquidity (LS) and wealth shocks (WS) respectively. FCL, WS, and LS were normalized to have zero mean and a standard deviation of 1. Post is defined as a binary variable equal to 1 for the period after 2014Q2. See subsection 2.2 for the definition of the independent variables. Standard errors are clustered at the firm and quarter level. ***, **, and * indicate significance at 10%, 5%, and 1% levels respectively. The sample is limited to the firms that ever imported in our data. Exporters are firms that ever exported in our data. Sources: Orbis, Superintendencia Financiera, DANE.
Table 6: Placebo Domestic Leverage

<table>
<thead>
<tr>
<th>Sample</th>
<th>ln (imports)</th>
<th>ln (exports)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Post × DCL</td>
<td>-0.029</td>
<td>-0.032</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>Sample</td>
<td>All</td>
<td>Non-X</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Time FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>523,719</td>
<td>350,094</td>
</tr>
</tbody>
</table>

Notes: The table reports the estimated β coefficient from Equation 4 with $\ln(1 + imports)$ on the left-hand side in columns (1)-(3) and $\ln(1 + exports)$ in column (4) at the quarterly level. Column (1) reports the estimated coefficient of the interaction of a Post with domestic currency leverage (DCL). DCL was normalized to have zero mean and a standard deviation of 1. Column (1) reports the results for all firms, column (2) focuses on non-exporters, while the sample in columns (3) and (4) is limited to only exporters. Standard errors are clustered at the firm and quarter level. ***,**, and * indicate significance at 10%, 5%, and 1% levels respectively. The sample is limited to the firms that ever imported in our data. Exporters are firms that ever exported in our data. Sources: Orbis, Superintendencia Financiera, DANE.
Table 7: Panel regression

<table>
<thead>
<tr>
<th></th>
<th>ln (imports)</th>
<th>ln (exports)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>L.FCL</td>
<td>5.418***</td>
<td>7.212***</td>
</tr>
<tr>
<td></td>
<td>(0.416)</td>
<td>(0.704)</td>
</tr>
<tr>
<td>L.FCL × L.Δ ER</td>
<td>-0.823</td>
<td>-5.396**</td>
</tr>
<tr>
<td></td>
<td>(1.348)</td>
<td>(2.399)</td>
</tr>
</tbody>
</table>

Sample | All | Non-Exporters | Exporters | All |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Time FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>231,602</td>
<td>149,337</td>
<td>82,265</td>
<td>231,602</td>
</tr>
</tbody>
</table>

Notes: The table reports the estimated β coefficient from panel regression discussed in subsection 4.6 with ln(1 + imports) on the left-hand side in columns (1)-(3) report and ln(1 + exports) in column (4) at the annual level. See subsection 2.2 for the definition of FCL, which was normalized to have zero mean and a standard deviation of 1. Column (1) reports the results for all firms, column (2) focuses on non-exporters, while the sample in columns (3) and (4) is limited to only exporters. Standard errors are clustered at the firm and quarter level. ***, **, and * indicate significance at 10%, 5%, and 1% levels respectively. The sample is limited to the firms that ever imported in our data. Exporters are firms that ever exported in our data. Sources: Orbis, Superintendencia Financiera, DANE.
Figure 1: Imports, exports and the exchange rate in Colombia

The thick red line represents aggregate exports and the dashed black line represents aggregate imports in Colombia in million dollars. Trade variables are plotted on the left vertical axis. The thin black line represents exchange rate (Colombian pesos per US dollar, right axis). Sources: DANE, Datastream.
The figure plots point estimates (red dots), 90% (navy vertical bars) and 95% (grey shade) confidence bands of the effect of foreign currency leverage on imports (left vertical axis). See Equation 5 for specification. The thin blue line represents average Colombian peso/US dollar exchange rate (right axis). Standard errors are clustered at the firm and quarter levels. The sample is limited to firms that imported at least once and never exported in our data. Sources: DANE, Orbis, Datasteam.
Figure 3: Estimated Impact of Imports by Exporters as a function of larger dominant currency financing

The figure plots point estimates (red dots), 90% (navy vertical bars) and 95% (grey shade) confidence bands of the effect of foreign currency leverage on imports (left vertical axis). See Equation 5 for specification. The thin blue line represents average Colombian peso/US dollar exchange rate (right axis). Standard errors are clustered at the firm and quarter levels. The sample is limited to firms that imported and exported at least once in our data. Sources: DANE, Orbis, Datasteam.
Figure 4: Estimated Impact of Exports as a function of larger dominant currency financing

The figure plots point estimates (red dots), 90% (navy vertical bars) and 95% (grey shade) confidence bands of the effect of foreign currency leverage on exports (left vertical axis). See Equation 5 for specification. The thin blue line represents average Colombian peso/US dollar exchange rate (right axis). Standard errors are clustered at the firm and quarter levels. The sample is limited to firms that imported and exported at least once in our data. Sources: DANE, Orbis, Datasteam.
Figure 5: Counterfactual Imports without Foreign Currency Debt

The figure plots the actual (thick blue line) and counterfactual (dashed red line) imports to Colombia. The counterfactual imports is computed assuming firms in 2014Q2 had zero foreign currency leverage. See subsection 4.3 for the details of the counterfactual exercise. Sources: DANE, Orbis.